| 研究生: |
余峻南 Yu-Jyun Nan |
|---|---|
| 論文名稱: |
預混貧油甲烷/空氣紊焰之 Measurements of Unsteady Stretch for Lean Premixed Turbulent Methane/Air Flames |
| 指導教授: |
施聖洋
Shenqyang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 預混紊流燃燒 |
| 外文關鍵詞: | premixed turbulent combustion |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文實驗量測預混貧油甲烷/空氣紊焰與一近似等向性紊流場交相干涉之非定常拉伸效應,並探討預混焰受不同紊流強度拉伸作用時,雷諾數效應(Reynolds number effect, Re)對局部火焰特性的影響。關於非定常拉伸效應的定量量測,實驗設備採用已發展多年之十字型燃燒器,它可產生一近似等向性紊流場於其大水平圓管,而其長垂直圓管可用來引燃一預混層焰,由上而下傳播並與等向性紊流交相干涉。我們使用高速粒子質點影像測速技術(high-speed particle image velocimetry, PIV)以擷取傳播火焰動態影像,並計算分析沿著火焰面之應變率(strain rate)、曲率(curvature)、拉伸率(stretch rate)和膨脹率(dilatation rate)等重要參數之相互關係。結果發現在當量比? = 0.7,Lewis數Le < 1和紊流強度為u?= 32.34 cm/s(Ref = 1020)時,拉伸率與膨脹率並沒有明顯之相關性,這與Driscoll和其團隊(C. J. Mueller, D. L. Reuss & M. C. Drake)在單一軸對稱渦對與貧油預混層焰交互作用之結果不同。在中央紊流區,紊焰拉伸率由應變率和曲率所共同主導,隨著紊焰傳播,曲率逐漸重要,成為主導拉伸率之主要項。有關雷諾數效應,當紊流強度由u?= 32.34 cm/s(Ref = 1020)增為u?= 46.2 cm/s(Ref = 1750)時,拉伸率與膨脹率更加沒有相關性,且隨著火焰與紊流場交相干涉時,拉伸率始終由應變率主導,顯示雷諾數效應會導致應變率增強進而主導拉伸率。
This thesis investigates experimentally the effect of unsteady stretch for lean premixed turbulent methane/air flames interacting with near-isotropic turbulence. We study the effect of Reynolds number (Ref) on local properties of lean premixed flames at two different turbulent intensities. The near-isotropic turbulence is generated in a large cruciform burner that includes a long vertical vessel and a large horizontal vessel equipped with a pair of counter-rotating fans and perforated plates. The long vertical vessel can be used to produce a downward propagating premixed flame to interact with near-isotropic turbulence. We apply high-speed particle imaging velocimetry (PIV) to measure flame-turbulence interactions, and thus the corresponding strain rate, curvature, stretch rate, and dilatation rate fields along the wrinkled flame front can be obtained. Results show that, at the equivalence ratio ? = 0.7, and the turbulent intensity u? = 32.34 cm/s (Ref = 1020), no apparent correlations between the stretch rate and the dilatation can be observed. This differs with that found by Driscoll and his co-workers who used a single vortex interacting with a lean premixed flame. It is found that at Ref = 1020, the stretch rate is dominated by both the strain rate and the curvature term. This situation gradually changes as flame propagating, in which the curvature becomes more and more important that eventually dominates the stretch rate. For large values of Ref up to 1750 (u? = 46.2 cm/s), the possible correlation between the stretch rate and the dilatation rate is even worse, and the strain rate term plays a more important role than the curvature term, indicating the effect of Reynolds number on the stretch rate.
Bradley, D., “How Fast Can We Burn?”, Proc. Combust. Inst., Vol. 24, pp. 247-262 (1992).
Echekki, T., and Chen, J. H., “Unsteady Strain Rate and Curvature Effects in Turbulent Premixed Methane-Air Flames”, Combust. Flame, Vol. 106, pp. 184-202 (1996).
Filatyev, S. A., Driscoll, J. F., Cater, C. D., and Donbar, J. M., “Measured Properties of Turbulent Premixed Flames for Model Assessment, Including Burning Velocities, Stretch Rates, and Surface Densities”, Combust. Flame, Vol. 141, pp. 1-21 (2005).
Frank, J. H., Lyons, K. M., and Long, M. B., “Simultaneous Scaler/Velocity Field Measurements in Turbulent Gas-Phase Flows”, Combust. Flame, Vol. 107, pp. 1-12 (1996).
Kadowaki, S., and Hasegawa, T., “Numerical Simulateion of Dynamics of Premixed Flames: Flame Instability and Vortex-Flame Interaction”, Prog. Energy Combust. Sci., Vol. 31, pp. 193-241 (2005).
Law, C. K., “Dynamics of Stretched Flames”, Proc. Combust. Inst., Vol. 22, pp. 1381-1402 (1988).
Mueller, C. J., Driscoll, J. F., Reuss, D. L., and Drake, M. C., “Effects of Unsteady Stretch on the Strength of A Freely-Propagating Flame Wrinkled By A Vortex”, Proc. Combust. Inst., Vol. 26, pp. 347-355 (1996).
Nye, D. A., Lee, T. G., Lee, T. W., and Santavicca, D. A., “Flame Stretch Measurements During the Interaction of Premixed Flames and Kármán Vortex Streets Using PIV”, Combust. Flame, Vol. 105, pp. 167-179 (1996).
Sinibaldi, J. O., Driscoll, J. F., Muller, C. J., Donbar, J. M., and Carter, C. D., “Propagation Speeds and Stretch Rates Measured along Wrinkled Flames to Assess the Theory of Flame Stretch”, Combust. Flame, Vol. 133, pp. 323-334 (2003).
Shy, S. S., I, W. K., and Lin, M. L., “A New Cruciform Burner and Its Turbulence Measurements for Premixed Turbulent Combustion Study”, Exp. Thermal Fluid Sci., Vol. 20, pp. 105-114 (2000a).
Shy, S. S., Lin, W. J., and Wei, J. C., “An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion”, Proc. R. Soc. (London) A, Vol. 456, 1997-2019 (2000b).
尹偉光 “預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及其未來發展”,國立中央大學機械工程研究所,碩士論文(1996)。
彭光榮 “低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅”,國立中央大學機械工程研究所,碩士論文(2000)。
李志杰 “非定常應變率、曲率和膨脹率定量量測在預混焰與紊流尾流交相干涉時”,國立中央大學機械工程研究所,碩士論文(2002)。
廖展興 “預混焰與紊流尾流交互作用:拉伸率與輻射熱損失效應量測”,國立中央大學機械工程研究所,碩士論文(2003)。
楊授印 “預混紊流燃燒:碎形特性、當量比和輻射熱損失效應”,國立中央大學機械工程研究所,博士論文(2003)。
張中千 “預紊甲烷紊焰拉伸量測,應用高速PIV”,國立中央大學機械工程研究所,碩士論文(2004)。