跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許菀庭
Wan-Ting Hsu
論文名稱: 利用PQ-PMMA擴散特性製作第二階反射式體積布拉格光柵之研究
Study of manufacturing 2nd order PQ-PMMA volume Bragg grating by using the diffusion characteristic of PQ
指導教授: 鍾德元
Te-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 97
中文關鍵詞: 體積布拉格全像光柵高分子感光材料
外文關鍵詞: Volume Bragg grating, PQ-PMMA
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究計畫使用PQ-PMMA高分子感光材料擴散特性搭配雙光束干涉曝光法製作第二階的反射式體積布拉格光柵並且改變曝光強度與時間找最佳的曝光參數,以得到較高的第二階光柵繞射效率。因此本論文首先寫下PQ-PMMA光化學反應速率式,模擬PQ與光產物於曝光時,濃度空間上的分佈情形,並且利用分子濃度計算出空間中折射率變化分佈,並以傅氏級數分析得到PQ及光產物週期性空間分佈之第一階與第二階傅氏振幅,最後使用耦合波理論求得其光柵之繞射效率。實驗上,使用第一階光柵的繞射效率最大值之曝光時間作為評估第二階光柵的繞射效率之重要參數。此方法將得到不同的曝光強度下最佳的第二階光柵之繞射效率。


    In this research, a concept of the manufacturing of 2nd order homemade phenanthrenequinone (PQ)-doped PMMA polymer (PQ-PMMA) volume Bragg gratings (VBGs) were proposed that relies on the diffusion characteristics of PQ. Then the rate-equations were written down and used to evaluate the best exposure parameters for diffraction efficiency of 2nd order grating. The simulation can be used to estimate the distributions of PQ and PQ-PMMA which can further determine the distribution of refractive index of PQ-PMMA. Finally, using the Fourier series and coupled-mode equation, the diffraction efficiency of 1st order and 2nd grating can be estimated. Experimentally, the growth curve of diffraction efficiency of 1st order grating was monitored and interrupt exposure at the maximum diffraction efficiency of 1st order grating. Empirically, the maximum diffraction of 1st order grating can be used to evaluate for diffraction efficiency of 2nd order grating. Based on above empirical norm, the best exposure parameters for diffraction efficiency of 2nd order grating can be obtained under different exposed time.

    中文摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 基本原理 5 2-1 體積布拉格光柵 5 2-1-1 基本原理 5 2-1-2 雙光束干涉 6 2-1-3 耦合波理論 9 2-1-4 體積布拉格光柵的高階繞射 12 2-2 PQ-PMMA感光高分子壓克力 14 2-2-1 聚合反應 14 2-2-2 光化學反應式 16 2-3 Fabry-Perot干涉儀原理 19 第三章 PQ-PMMA光化學反應數值模擬分析 23 3-1 反應速率式 23 3-2 數值模擬與分析 26 3-2-1 PQ與光產物濃度的空間分佈隨時間的變化 26 3-2-2 擴散反應 28 3-2-3 分子濃度與折射率關係 30 3-2-4 折射率空間分佈與反射光譜之關係 32 3-2-5 傅氏級數分析與繞射效率 33 3-3 第二階光柵模型 39 3-3-1 第二階光柵的數值模擬與分析 39 3-3-2 不同紀錄光強度造成的影響 41 第四章 實驗架構與數據分析 44 4-1 PQ-PMMA製備過程 44 4-2 雙光束干涉實驗架構 46 4-2-1 曝光架構 46 4-2-2 夾具設計 47 4-3 以正向雙光束干涉實驗記錄第一階光柵 49 4-3-1 不同PQ濃度的連續式曝光實驗 49 4-3-2 擴散反應實驗 53 4-4 以雙光束干涉實驗記錄第二階光柵 55 4-4-1 固定曝光時間的第二階光柵曝光實驗 55 4-4-2 改變光強度與不同曝光時間的第二階光柵 60 4-5 體積布拉格光柵的光學特性量測 65 4-6 以雙光束干涉實驗紀錄藍光的第二階光柵 70 第五章 結論 72 第六章 參考文獻 74 第七章 附錄 76

    1. G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Proc. SPIE 5711, 166-176 (2005).
    2. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, "High-frequency Bragg gratings in a photothermorefractive glass," Optics Letters, vol. 25, pp. 1693-1695, 2000/12/01 (2000).
    3. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, "High-efficiency Bragg gratings in photothermorefractive glass," Applied Optics, vol. 38, pp. 619-627, 1999/02/01 (1999).
    4. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, "Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters," Opt. Lett. 33, 566-568 (2008).
    5. 張博宇, "PQ:PMMA高分子全像片之製作與全像儲存的研究," 國立交通大學, 2006.
    6. 詹偉平, "以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究," (國立中央大學, 2010).
    7. 杜隆琦, "以PQ:PMMA製作體積布拉格光柵回饋半導體雷射以達成波長可調之窄波長雷射輸出," (國立中央大學, 2014).
    8. 陳傳文, "以PQ:PMMA製作反射式體積布拉格光柵回饋錐形半導體放大器之窄波長雷射輸出研究,"(國立中央大學, 2016).
    9. 施堡仁, "以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究," (國立中央大學, 2016).
    10. A. Yariv and P. Yeh, Optical waves in crystals : propagation and control of laser radiation. Hoboken, N.J.: John Wiley and Sons, (2003).
    11. Y. Qi, E. Tolstik, H. Li, J. Guo, M. R. Gleeson, V. Matusevich, R. Kowarschik, and J. T. Sheridan, "Study of PQ/PMMA photopolymer. Part 2: experimental results," JOSA B 30, 3308-3315 (2013).
    12. S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich,and R. Kowarschik, "Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material," J. Opt. Soc. Am. B 28, 2833-2843 (2011).
    13. S. H. Lin, S. L. Cho, J. H. Lin, K. Y. Hsu, and S. Chi, "Influence of fabrication conditions on characteristics of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for holographic memory," Opt Commun 320, 145-150 (2014).
    14. Hecht, E., OPTICS, 4th, (2002).
    15. M. R. Gleeson, and J. T. Sheridan, "Nonlocal photopolymerization kinetics including 68 multiple termination mechanisms and dark reactions. Part I. Modeling," J. Opt. Soc. Am. B 26, 1736-1745 (2009).
    16. Y-N. Hsiao, W.-T. Whang, and S. H. Lin, "Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials," Opt. Eng. 43, 1993-2002 (2004).
    17. 謝裕華, "以動態模型分析PQ-DMNA/PMMA製作體積布拉格光柵之光化學反應與開發同調雷射光束合併元件之研究,"(2018).
    18. J. A. Dobrowolski and D. Lowe, "Optical thin film synthesis program based on the use of Fourier transforms," Applied Optics, vol.17, Issue 19, pp.3039-3050 (1978).
    19. Bertrand G. Bovard, "Rugate filter design: the modified Fourier transform technique," Applied Optics, vol.29, No.1 (1990).
    20. W. H. Southwell, "Spectral response calculations of rugate filters using coupled-wave theory," J. Opt. Soc. Am. A 5, 1558-1564 (1988).
    21. Andreas Jechow, Axel Heuer, and Ralf Menzel, "High brightness, tunable biphoton source at 976 nm for quantum spectroscopy, "OPTICS EXPRESS,vol. 16, No. 17 (2008).

    QR CODE
    :::