| 研究生: |
王介亨 Jei-Hun Wang |
|---|---|
| 論文名稱: |
以Heart-cut技術配合單偵檢器發展氣相層析“剪裁(tailoring)”技術 Peak Tailoring Concept in GC Analysis of Volatile Organic Pollutants in the Atmosphere |
| 指導教授: |
王家麟
Jia-Lin Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 自動化操作 、氣相層析儀 、剪裁 |
| 外文關鍵詞: | tailoring, Heart-cut, Automation, GC |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的在建立針對揮發度較高的複雜樣品,例如環境樣品萃取物、油品、香精等樣品的新型分析系統,在本研究中有別於以往,雙管柱雙FID層析之設計,只需要使用單顆偵檢器偵測,即可得到C3~C12全物群種的分析圖譜。
對於揮發度較高的複雜樣品,氣相層析儀通常為最適合的分析工具,氣相層析多樣化的偵檢器與各種高解析管柱提供了複雜樣品優良的分析效果,然而每一種層析管柱通常只適合某一極性範圍的化合物分離,當待測樣品基質複雜或極性揮發度差異過大時,則使用單一種管柱往往無法獲得較全面的分離效果,此時必須使用兩種不同類型的管柱,分別在兩種管柱中得到互補的圖譜;然而在一般的氣相層析儀的應用當中,若要針對揮發度較高的複雜樣品分析,則必須使用雙管柱流析而後注入雙偵檢器檢測,如此不僅限制了樣品流析的位相,雙偵檢器的使用也提高了成本的付出,當然也包括了雙偵檢器裝置的費用以及使用上氣體的花費。
在本研究中,應用二維層析(2D-GC)的概念,使用了”Heart-cut”技術,將原本必須使用雙管柱進樣流析,搭配雙偵檢器檢測的裝置改良簡化,先以一長度較短的WCOT管柱作為預管柱,再利用一Heart-cut裝置並聯雙管柱作為主要分析的管柱;以一PLOT 管柱作為高揮發性物質的分離,而使用另一WCOT管柱作為低揮發性物質的分離,並且將雙管柱的後端串聯,連接至單一偵檢器檢測,由雙管柱中流析出的物質即可完全的被單一偵檢器所偵測;我們再利用流經預管柱與雙管柱內載流氣體的流量控制與Heart-cut裝置內簡單的電磁閥切換調配由雙管柱中流析出來的各物群種,讓雙管柱中各物群種的滯留時間產生變化,延後物種出現的時間,使流析出來的物群種交錯流析出雙管柱,如此最後匯流進單一偵檢器,達到”剪裁(tailoring)”的效果,如此一來即可將原本兩張層析峰排列較鬆散的層析圖譜合併成單一層析峰排列緊湊的圖譜,而達到簡化分析系統的目的。
Ambient volatile organic compounds (VOCs) are known to induce various health or environmental concerns, as most of which are either toxic or precursors of some other secondary air pollutants. Monitoring of these species in the air with adequate time resolution constitutes the first step towards the understanding their impact on the environment. An automated gas chromatographic system aiming at performing unattended hourly measurement of VOCs and ozone precursors was developed in house. To encompass volatile organic compounds of a wide range of volatility, two different designs in sample enrichment and delivery were explored in order to simultaneously separate VOCs of C3-C12 in ambient air. In our first design, dual traps and dual columns was adopted to cope with the large volatility difference between these VOCs, in which the C3-C6 species are separated on one set of trap and column, whereas the C6-C12 species are separated on the other. Two detectors are needed for these two channels of separation, which has been the basic design concept found in many ozone precursor monitoring stations. These two detectors are usually flame ionization detectors (FID), plus the two sets of hardware of valves and traps, hence imposing great demands on gas consumption and routine maintenance for keeping the systems running in a continuous mode. To reduce the complexity of the system, a different design employing the heat-cut technique was developed to simplify the system by using only single trap and FID for the two channels. In such a design, plumbing was designed to allow C6-C12 peaks from the DB-1 column following C2-C5 peaks from the PLOT column resulting in a single combined chromatogram. Furthermore, stop flow technique was configured to manipulate peak retention times into peak groups, so that chunks of peaks from one column can be surgically inserted into the gaps of the other chromatogram to make the synthesized chromatogram more condensed but without losing resolution.
This innovative “peak tailoring” technique is simply in design, less costly, and extremely robust for prolonged use as no moving parts are used, which is beneficial for maintaining remote monitoring stations.
參考文獻:
1.行政院環境保護署:http://www.epa.gov.tw/
2.John, H. Seinfeld, Urban Air Pollution:State of the Science, Science 1989, 243.
3.United Nations Environmental Programme (UNEP). Montreal Protocol on substances that deplete the ozone layer. September 16, Montreal, 1987.
4.David D. B., 1991. Air Toxics:The Problem. EPA Journal . 172-30.
5.Horstman, D. H.;Folinsbee, P. J.;Ives, S.; Abdul-Salaam and McDonneoll W. F., Ozone concentration and pulmonary response relationships for 6.6 hours exposures with five hours of moderate exercise to 0.08, 0.10, 0.12 ppm., Am. Rev. Respir. Dis, 1990,142, 1158-1163.
6.National Research Council, Rethinking the Ozone Problem in Urban and Regional Air Pollution. National Academy Press,. Washington, DC, 1991.
7.DeMore, W. B.;Sander, S. P.; Golden, D. M.;Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.,;Kolb, C. E.,;Molina, M. J.Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling,1997. Evaluation No. 12, NASA Panel for Data Evaluation, Jet Propulsion Laboratory Publication 97-4, Pasadena, CA, January 15.
8.Atkinson, R., Atmospheric reactions of alkoxy and b-hydroxyalkoxy radicals. International Journal of Chemical Kinetics 1997b, 29, 99-111.
9.Seinfeld, J. H. Air Pollution Wiley Interscience,1986.
10.World Meteorological Organization, 1995. Scientic assessment of ozone depletion: 1994. World Meteorological Organization Global Ozone Research and Monitoring Project - Report No. 37, Geneva, Switzerland, February.
11.Sawyer, R. F.;Harley, R. A.;Cadle, S. H.;Norbeck, J. M.;Slott, R.;Bravo, H. A. Mobile sources critical review: 1998 NARSTO assessment., Atmos. Environ. 2000, 34, 2161-2181.
12.Placet, M.;Mann C.,; Gilbert, R. O.; Niefer, M.; Emissions from stationary sources. Atmos. Environ. in press. 2000.
13.Arey, J.;Corchnoy, S. B.;Atkinson, R. Emission of linalool from Valencia orange blossoms and its observation in ambient air. Atmos. Environ. 1991,25A, 1377-1381.
14.Pankow, J. F.;Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos. Environ. 1987, 21, 2275-2283.
15.Finizio, A.;Mackay, D.;Bidleman, T.;Harner, T. Octanol- air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmos. Environ.1997, 31, 2289-2296.
16.Ghameides, W. L.;Fehsenfeld, F.;Rodgers, M. O.;Caedelino, C.;Martinez, J.;Parrish, D.;Lonneman, W.;awson, D.R.;Rasmussen, R.A.;immermam, P.;reeberg, J.;iddleton, P.;ang, T.;zone precursor relationship in the ambient air. J. Geophy. Res. 1992, 97, 6037~6055.
17.Bowman, F. M.;Seinfeld, J. H.;Ozone productivity of atmospheric organics, J. Geophy. Res. 1994, 99, 5309~5324.
18.Atkinson, R. “Gas-phase tropospheric chemistry og organic compounds: a review.” Atmos. Environ. 1990, 24A ,1.
19.Bidleman, T. F.;Atmospheric processes. Environmental Science and Technology. 1988, 22, 361-367.
20.Cunnold, D.;Alyes, F.;Prinn, R.;Methodo;ogy for Determining the Atmospheric Lifetime of Fluorocarbons,J. Geophys. Res. 1978, 83, 5493.
21.Atkinson, R.;Atmospheric chemistry of VOCs and NOx Atmospheric Environment. 2000, 34, 2063-2101.
22.Willwam, P. L.;Carter Development og ozone reactivity scales for volatile organic compounds. J. air & waste . 1994, 44, 881-899
23.Atkinson, R.;Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. Journal of Physical and Chemical Reference Data, Monograph. 1989,1, 1-246.
24.Atkinson, R.;Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds. Journal of Physical and Chemical Reference Data .1991, 20, 459-507.
25.William, P. L.;Carter;Development of ozonereactivity scales for volatile organic compounds Journal of the Air and Waste Management Association. 1994, 44, 881-899.
26.http://www.epa.gov/ttn/amtic/ord/00161.txt
27.http://www.epa.gov/ttn/amtic/files/ambient/airtox/to-15r.pdf
28.http://www.niea.gov.tw/niea/AIR/A71511B.htm
29.http://www.epa.gov/ttn/amtic/files/ambient/airtox/to-17r.pdf
30.http://www.niea.gov.tw/niea/AIR/A50510B.htm
31.Simo, R.;Grimalt, J. O.;Albaiges, J.;Journal of Chromatography A. 1993, 655, 301.
32.Lai, J. Y.;Matisova, D. He.;Singer, E.;Niki, H.;J. of Chromatography. 1993. 643, 77.
33.Dewulf, J.;Van Langenhove, H.;Anthropogenic volatile organic compounds in ambient air and natural waters:a review on recent developments of analytical methodology, performance and interpretation of field measurements. J. of Chromatogr. A. 1999, 163-177 .
34.Brown, R. H.;Pumell, C. J.;J. of Chromatography. 1979,178, 79 .
35.Reinecke, F. J. and Bachmann, K. J. of Chromatography, 1985, 323, 323.
36.Bruner, F.;Crescentini, G.;Mangani, F.;Chromatographia, 1990.33, 565.
37.Nunez, A. J.;Gonzalez, L. F.;J. Lanak,;J. of Chromatography . 1984,300,127.
38.Crist, H. L.;Mitchell, W. J. Environ. Sci. Technol., 1986,20, 1260.
39.Cao, X. L;Hewitt, C. N.; Atmospheric Environment. 1993, 27A, 1865.
40.Unger, K. K.;Anal. Chem. 1983, 55, 361A.
41.Engewald, W.;Porschmann, J.;Welsh, T. Chromatographia, 1990, 30, 537.
42.Lee,J. W.;Lee, J. W.; Wang, G. S,;Suh, S. H.;Moon, H.; Adsorption of Chlorinated Volatile Organic Compounds on MCM-48 J. Chem. Eng. Data. 2003, 48, 381-387.
43.吳季融 王家麟 空氣中有機污染物自動分析技術之開發研究 壹、碳沸石多重床與中孔徑矽沸石之氣體吸附特性研究 貳、有機污染物垂直碳空光化研究,中華民國九十二年六月 國立中央大學 化學研究所 碩士論文
44.Sanchez, J. M.;Sacks R. D. On-Line Multibed Sorption Trap and Injector for the GC Analysis of Organic Vapors in Large-Volume, Air Samples, Anal. Chem. 2003, 75, 978-985.
45.陳偉立 王家麟 大氣及水樣中揮發性有機氣體自動化新技術之建立及應用 中華民國八十九年六月 國立中央大學 化學研究所 碩士論文
46.USEPA;Compendium Method TO-2: Method for the Determination of Volatile Organic Compounds (VOCs) in Ambient Air by Carbon Molecular Sieve Adsorption Gas Chromatography/Mass Spectrometry (GC/MS).
47.Holdren, M.;Danhof, S.;Grassi, M.;Stets, J.; Keigley, B.;Woodruff, V.;Development and evaluation of a thermoelectric cold trap for the gas chromatographic analysis of atmospheric compounds, Anal. Chem. 1998, 70, 4836-4840.
48.Peltier coolers By Victor Rudometov, Eugene Rudometov http://www.digit-life.com/articles/peltiercoolers/
49.Michael, L.;Advantages and Applications of Wide-bore, thick-film capillary columns in GC ,Duffy 1985.
50.Wilson, S. T.;Lok, B. M.;Messina, C. A.;Cannan, T. R.;Hanigen, E. M.;Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids, J. Am. Chem. Soc.,1982,104, 1146-1147.
51.Davis, M. E.;Saldarriaga, S.;Montes, C.;Graces, J.;Crowder, C.;A molecular sieves with eighteen-membered rings, Nature. 1988, 311, 698-699.
52.Kresge, C. T.;Leonowicz, M. E.;Roth, W. J.;Vartuli, J. C.;Beck, J. S.;Orderde mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992, 359, 710-712.
53.Wang, J.-L.;Chen, S. W.;Chew, C. Automated gas chromatography with cryogenic/sorbent trap for the measurement of volatile organic compounds in the atmosphere”J. Chromatography A. 1999, 863, 183-193.
54.Wang, J.-L.;Chena, Weih-Li;Herb, Guor-Rong ;Chanc Chang-Chuan;Validation of ozone precursor measurement through intercomparison with NOx and CO measurement Atmospheric Environment. 2002, 36, 3041-3047.
55.丁建忠 王家麟 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析 中華民國九十一年六月 國立中央大學 化學研究所 碩士論文
56.Seeley, J. V.;Bueno, P. A.;Dual-Secondary Column Comprehensive Two-Dimensional Gas Chromatography (GC x 2GC ) with Differential Flow Modulation, 2002 Gulf Coast Conference, Galveston Island, TX, September 2002. 10-12.
57.Seeley, J. V.;LaClair, R. and Bueno, P. A. Comprehensive Two-Dimensional GC Symposium Differential Flow GCxGC Without Diaphragm Valves: A Simple and Robust Way to Produce Two-Dimensional Separations
58.Deans, D. R.;Chromatographia. 1968,1, 18.
59.Deans, D. R.;J. Chromatogr. 1981, 203, 19.
60.Klee, M.;Norman, W, ;Szelewski, M,;McCurry, J.;Quimby, B.; Simplified Microfluidic Devices for Capillary Collumn Effluent Manipulation, Agilent Technologies, Inc., Wilmington, DE, USA.
61.Blomberg, J.;Brinkman, Th.;Practical and theoretical aspects of designing a flame-ionization detector/mass spectrometer Deans, switch Pressure-flow relations in gas chromatograph-detector interfaces using vacuum-outlet conditions ,J. of Chromatography A. 1999, 831, 257-265.
62.Latella, A.;Stani, G.;Cobelli, L.;Matthew Duane 3 and Bo R. Larsen 3 Semicontinuous analysis of ozone precursor hydrocarbons in air and vehicleexhaust with cryogen free sampling and dual column Deans'' switch, Journal of Chromatography A.
63.http://www.epa.gov/airprogm/oar/oaqps/pams