| 研究生: |
許建祺 Chien-Chi Hsu |
|---|---|
| 論文名稱: |
Thin-GaN發光二極體電性改善之研究 The Improvement of Electrical Characteristic in Thin-GaN Light-Emitting Diodes |
| 指導教授: |
張正陽
Jenq-Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 電性改善 、雷射剝離 、thin-GaN發光二極體 |
| 外文關鍵詞: | thin-GaN LEDs, improvement of electrical characteristics, laser lift-off |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以氮化鎵為基礎之發光二極體(GaN-based LED)的晶粒製程技術主要分為傳統的打線(Wire-Bonding)封裝製程、覆晶(Flip-Chip)製程以及thin-GaN製程等技術,由於藍寶石(Sapphire)基板之高熱阻使得傳統打線、覆晶製程不適用於高功率操作之LED。本論文主要研究thin-GaN製程,以晶圓鍵合(Wafer Bonding)技術與雷射剝離(Laser Lift-Off)技術,將氮化鎵薄膜封裝於導熱效果較佳之矽(Si)基板上。
在製作thin-GaN LED中,發現鈍化層(Passivation)完整性與緻密性會對LED之逆偏漏電流(Reverse Leakage Current)造成影響,而電漿損害(Plasma Damage)以及高串聯電阻(Series Resistance)也會破壞LED之順向偏壓(Forward Voltage)。針對改善thin-GaN LED之逆偏漏電流,我們利用高緻密性之二氧化矽(SiO2)做為鈍化層,成功將thin-GaN LED在-5V逆向偏壓之漏電流降至-0.15?A;在改善thin-GaN LED之順向偏壓,製作Ni薄膜避免電漿損害,以及移除未摻雜氮化鎵(u-GaN Removal)薄膜降低串聯電阻,有效下降thin-GaN LED之順向偏壓。
在我們製作之thin-GaN LED中,順向偏壓最佳約為3.6V,相較於文獻有改善空間;而本研究使用晶圓鍵合與雷射剝離技術,對thin-GaN LED建立製程平台,並改善thin-GaN LED之電特性表現。
Chip process technology of GaN-based light-emitting diodes includes wire-bonding, flip-chip, thin-GaN, and so on. However, wire-bonding and flip-chip are inappropriate for high-power LED chips due to high thermal resistance of sapphire substrates. In this thesis, the GaN thin flim is packaged on a material with higher thermal conductivity, silicon substrates, by wafer bonding technology and laser lift-off.
In the fabrication process of thin-GaN LED, we discover that the coverage and the denseness of passivation effect the reverse leakage current of LED. Further, plasma damage and series resistance also degrade the forward voltage of LED. To improve the leakage current of thin-GaN LED, a highly dense passivation made of SiO2 is utilized; leakage current achieves -0.15uA at reverse voltage of -5V. Also, Ni thin film applied to avoid damage caused by plasma is in order to ameliorate the forward voltage of thin-GaN LED. Moreover, decrease of series resistance is achieved by u-GaN removal, which is to reduce the forward voltage of thin-GaN LED.
The best forward voltage of our fabricated thin-GaN LED is 3.6V approximately; nevertheless, it still need to be improved more compared to the reference. A platform of thin-GaN LED chip process is established for improving the electrical characteristics of thin-GaN LED is utilized by wafer bonding and laser lift-off.
[1]取自http://www.lexus.com.tw
[2]取自http://www.cree.com/products/xlamp7090_xre.asp
[3]取自http://www.sonystyle.com.tw/vaio/#product-SZ-LED
[4]I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of AlN buffer layer on crystallographic structure and on electrical and optical-properties of GaN and Ga1-xAlxN films grown on sapphire substrate by MOVPE,” Journal of Crystal Growth, Vol. 98, pp. 209, 1989.
[5]S Nakamura, “GaN growth using GaN buffer layer,” Japanese Journal of Applied Physics Part 2-Letters, Vol. 30, pp. L1705, 1991.
[6]S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting-diodes,” Applied Physics Letters, Vol. 67, pp. 1868, 1995.
[7]F. M. Steranka, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y.-C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, and J. J. Wierer, “High power LEDs – Technology status and market applications,” Physica Status Solidi A-Applied Research, Vol. 194, pp. 380, 2002.
[8]E. F. Schubert, Light-Emitting Diodes, 2nd ed., Cambridge Univ. Press, New York, 2006.
[9]史光國,半導體發光二極體及固態照明,全華科技圖書股份有限公司,台北是,民國九十四年。
[10]N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J. W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≦2000 Å) active regions,” Applied Physics Letters, Vol. 74, pp. 2230, 1999.
[11]T. Baba, R. Watanabe, K. Asano, F. Koyama, and K. Iga, “Theoretical and experimental estimations of photon recycling effect in light emitting devices with a metal mirror,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, Vol.35, pp. 97, 1996.
[12]M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Applied Physics Letter, Vol. 75, pp. 2365, 1999.
[13]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Applied Physics Letters, Vol. 84, pp. 855, 2004.
[14]C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chi, “Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN,” Applied Physics Letters, Vol. 90, pp. 142115, 2007.
[15]施敏(S. M. Sze)著,半導體元件物理與製作技術,黃調元譯,二版,國立交通大學出版社,新竹,民國九十一年。
[16]取自http://www.hbcpnetbase.com/
[17]Z.S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, “Enhancement of (In,Ga)N light-emitting diode performance by laser liftoff and transfer from sapphire to silicon,” IEEE Photonics Technology Letters, Vol. 14, pp. 1400, 2002.
[18]C. F. Chu, F. I. Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, “Study of GaN light-emitting diodes fabricated by laser lift-off technique,” Journal Of Applied Physics, Vol. 95, pp. 3916, 2004.
[19]李偉吉,「具IZO透明導電層之高功率大面積垂直結構GaN-基LEDs之研製」,國立成功大學,碩士論文,民國九十五年。
[20]X. A. Cao and S. D. Arthur, “High-power and reliable operation of vertical light-emitting diodes on bulk GaN,” Applied Physics Letters, Vol. 85, pp. 3971, 2004.
[21]M. K.Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films,” Applied Physics Letters, Vol. 69, pp. 1749, 1996.
[22]W. S. Wang, L. F. Schloss, G. S. Sudhir, B. P. Linder, K. M. Yu, E. R. Weber, T Sands, and N. W. Cheung, “Pulsed excimer laser processing of AlN/GaN thin films,” Master. Res. Soc. Symp., Proc. 449, pp. 1011, 1997
[23]X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes,” IEEE Electron Device Letters, Vol. 23, pp. 535, 2002.
[24]V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. A. Khan, N. Pala, M. Shur, and R. Gaska, “SiO2-passivated lateral-geometry GaN transparent Schottky-barrier detectors,” Applied Physics Letters, Vol. 77, pp. 863, 2000.
[25]X. A. Cao, P. M. Sandvik, S. F. LeBoeuf, and S. D. Arthur, “Defect generation in InGaN/GaN light-emitting diodes under forward and reverse electrical stresses,” Microelectronics Reliability, Vol. 43, pp. 1987, 2003.
[26]C. Huh, S. W. Kim, H. S. Kim, H. M. Kim, H. Hwang, and S. J. Park, “Effects of sulfur treatment on electrical and optical performance of InGaN/GaN multiple-quantum-well blue light-emitting diodes,” Applied Physics Letters, Vol. 78, pp. 1766, 2001.
[27]H. M. Kim, C. Huh, S. W. Kim, N. M. Park, and S. J. Park, “Suppression of leakage current in InGaN/GaN multiple-quantum well LEDs by N2O plasma treatment,” Electrochemical And Solid State Letters, Vol. 7, pp. G241, 2004.
[28]S. H. Huang, R. H. Horng, S. L. Li, K. W. Yen, D. S. Wuu, C. K. Lin, H. Liu, “Thermally stable mirror structures for vertical-conducting GaN/Mirror/Si light-emitting diodes,” IEEE Photonics Technology Letters, Vol. 19, pp. 1913, 2007.