跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳玥潾
Yueh-lin Chen
論文名稱: 探討酵母菌粒線體之glutamyl-tRNA synthetase的演化及功能
指導教授: 王健家
Chien-chia Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 98
中文關鍵詞: 胺醯化
外文關鍵詞: non-discriminating, discriminating, glutamyl-tRNA synthetase
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 釀酒酵母菌具有兩種GluRS,分別是由不同基因所編碼出來,一種是作用在細胞質的GluRS(GluRSc),由GUS1編碼;另一種則是作用在粒線體的GluRS(GluRSm),由MSE1編碼。GluRSc除了在細胞質胺醯化tRNAnGlu以外,也會跑到粒線體胺醯化tRNAmGln;而GluRSm只會在粒線體胺醯化tRNAmGlu。能辨識非同源tRNAGln的GluRS稱為non-discriminating GluRS(ND-GluRS),只能辨識同源tRNAGlu的GluRS則稱為discriminating GluRS(D-GluRS)。我們在研究中發現,只有細菌的ND-GluRS能取代酵母菌GluRSm,其他真核生物和細菌的D-GluRS則都無法取代酵母菌GluRSm。我們進一步將這些物種的GluRS序列進行比對,發現酵母菌GluRSm上辨識tRNA的重要胺基酸與細菌的ND-GluRS相似。另一方面,我們比對了細胞質的tRNAnGlu和粒線體的tRNAmGlu及tRNAmGln的二級結構序列,發現在accepter stem的第一個核苷酸配對和anticodon loop的第33個和第36個核苷酸有差異性,這可能是這些tRNA被GluRS辨識的位置。因此我們將tRNAmGlu和tRNAmGln這幾個位置上的核苷酸進行互換,進一步做胺醯化活性測試,但發現in vitro transcription的tRNA無法被胺醯化。親源演化的分析結果顯示,真核生物的GluRSm與細菌的D-GluRS較接近,且與古生菌的GluRS較遠,由此可知真核生物粒線體的GluRS可能源自細菌。
    論文第二部份,著重於酵母菌Vanderwaltozyma polyspora中glycyl-tRNA synthetase (GlyRS)的研究。在所有已知的酵母菌種中,Saccharomyces cerevisiae 和 Vanderwaltozyma polyspora被發現具有兩個編碼GlyRS的基因。GRS1編碼細胞質和粒線體活性,而GRS2在正常生長情形下是可有可無的。我們在這顯示VpGlyRS2(由V. polyspora GRS2編碼)能有效拯救S. cerevisiae GRS1剔除珠的細胞質功能。雖然VpGlyRS2在正常情況下不表現,但卻能在高溫、高pH值和酒精的環境中被誘導出。此外,在高溫下,VpGlyRS2在細胞內比VpGlyRS1更穩定,且在體外試驗中,VpGlyRS2具有活性。這些結果暗示V. polyspora的GRS2有利於酵母菌在壓力環境下維持生存。


    The yeast Saccharomyces cerevisiae possesses two GluRS enzymes that are encoded by two different nuclear genes. Cytoplasmic GluRS (GluRSc) is encoded by GUS1, while mitochondrial GluRS (GluRSm) is encoded by MSE1. GluRSc attaches glutamate to cytoplasmic tRNAnGlu and mitochondrial tRNAmGln. In contrast, GluRSm glutamylates only mitochondrial tRNAmGlu. As GluRSc can attach glutamate to both tRNAnGlu and tRNAmGln, it is called non-discriminating GluRS (ND-GluRS). On the other hand, GluRSm only recognizes tRNAmGlu, it is called discriminating GluRS (D-GluRS).In our study, we found that ND-GluRS of bacteria can rescue a yeast GluRSm knockout strain, but D-GluRS of eukaryotes and other bacteria cannot. Alignment of these GluRSs sequences showed that the amino acids responsible for tRNAGlu recognition are well conserved in yeast GluRSm and the aforementioned ND-GluRSs of bacteria. Comparison of the secondary structure of cytoplasmic tRNAnGlu, mitochondrial tRNAmGlu, and mitochondrial tRNAmGln showed that the first base pair in the accepter stem and nucleosides 33 and 36 in the anticodon loop are highly diverged and may serve as their identity elements. Unfortunately, in vitro transcribed tRNAmGlu and tRNAmGln were inactive for aminoacylation, and further mapping of identity elements in tRNA were thus impossible. Phylogenetic analysis showed that the GluRSm sequences of eukaryotes are clustered in a monophyletic branch that exhibits a higher affinity with GluRS of bacteria than with GluRS of archaea, suggesting that mitochondrial GluRSs of eukaryotes are descended from GluRSs of bacteria.
    A second part of the thesis is focused on yeast glycyl-tRNA synthetase (GlyRS). In all yeast species, Saccharomyces cerevisiae and Vanderwaltozyma polyspora are the only two yeasts known to contain two GlyRS genes. GRS1 encodes both cytoplasmic and mitochondrial activities, whereas GRS2 is silent and dispensable under normal growth conditions. We show here that VpGlyRS2 (encoded by V. polyspora GRS2) effectively rescued the cytoplasmic defect of a S. cerevisiae GRS1 knockout strain when expressed from a constitutive promoter. Although VpGRS2 was practically silent under normal conditions, but its expression could be induced by high temperature, high pH, and ethanol. In addition, VpGlyRS2 was exclusively localized in the cytoplasm, more stable under heat-shock conditions in vivo, and almost as active as VpGlyRS1 in glycylation of tRNA in vitro. Our study reinforces the hypothesis that GRS2 of V. polyspora is an inducible gene that acts in response to stress to maintain the homeostasis of yeast cells.

    中文摘要----------------------------------------------------------------------------------------------------I 英文摘要---------------------------------------------------------------------------------------------------II 致謝--------------------------------------------------------------------------------------------------------III 目錄--------------------------------------------------------------------------------------------------------IV 表目錄-----------------------------------------------------------------------------------------------------IX 圖目錄------------------------------------------------------------------------------------------------------X 附錄-------------------------------------------------------------------------------------------------------XII 物種縮寫檢索表---------------------------------------------------------------------------------------XIII aaRSs縮寫檢所表--------------------------------------------------------------------------------------XV 第一章 緒論 1.1 Aminoacyl-tRNA synthetases(aaRSs)介紹--------------------------------------------1 1.1.1 aaRSs之生化功能----------------------------------------------------------------------1 1.1.2 aaRSs的分類----------------------------------------------------------------------------1 1.1.3 aaRSs對tRNA 的辨識----------------------------------------------------------------2 1.1.4 原核生物與真核生物之aaRSs的差異----------------------------------------------2 1.1.5 aaRSs的演化----------------------------------------------------------------------------3 1.1.6 aaRSs生理重要性及其他非典型功能----------------------------------------------3 1.2 Glutamyl-tRNA synthetase(GluRS)介紹----------------------------------------------4 1.2.1 GluRS之生理特性----------------------------------------------------------------------4 1.2.2 D-GluRS和ND-GluRS的定義-------------------------------------------------------5 1.2.3 GluRS對tRNAGlu和tRNAGln的辨識------------------------------------------------5 1.2.4 GluRS的演化---------------------------------------------------------------------------6 1.3 Glycyl-tRNA synthetase(GlyRS)介紹-------------------------------------------------6 1.3.1 GlyRS之生理特性-----------------------------------------------------------------------6 1.3.2 Saccharomyces cerevisiae之GRS1和GRS2----------------------------------------6 1.3.3 non-AUG轉譯起始密碼的aaRSs----------------------------------------------------7 1.4 研究目的---------------------------------------------------------------------------------------8 第二章 材料與方法 2.1 質體重組---------------------------------------------------------------------------------------9 2.1.1 GluRS質體建構------------------------------------------------------------------------9 2.1.2 tRNA質體建構-------------------------------------------------------------------------9 2.2 大腸桿菌勝任細胞的製備與轉型---------------------------------------------------------9 2.2.1 大腸桿菌勝任細胞的製備-------------------------------------------------11 2.2.2 大腸桿菌勝任細胞的轉型作用(transformation)-------------------------------11 2.3 酵母菌勝任細胞的製備與轉型-----------------------------------------------------------11 2.3.1 酵母菌勝任細胞的製備---------------------------------------------------------12 2.3.2 酵母菌勝任細胞的轉型作用-------------------------------------------------------12 2.4 功能性互補試驗(complementation)--------------------------------------------------13 2.4.1 粒線體功能測試----------------------------------------------------------------------14 2.5 蛋白質表現測定-----------------------------------------------------------------------------14 2.5.1 蛋白質製備----------------------------------------------------------------------------15 2.5.2 Sodium Dodecyl Sulfate-Polyacrylamide Gel(SDS-PAGE)----------------15 2.5.3 Coomassie Brilliant Blue------------------------------------------------------------16 2.5.4 西方墨點法----------------------------------------------------------------------------16 2.6 酵母菌融合蛋白表現與純化--------------------------------------------------------------18 2.6.1 細胞破碎儀破菌-----------------------------------------------------------------------19 2.6.2 Ni-NTA純化---------------------------------------------------------------------------19 2.7 Fluorescence location assay----------------------------------------------------------------20 2.8 點突變(Site-directed mutagenesis)----------------------------------------------------20 2.9 純化mitochondrial tRNA ------------------------------------------------------------------21 2.9.1 細胞破碎儀破菌-----------------------------------------------------------------------22 2.9.2 純化toatl RNA-----------------------------------------------------------------------22 2.9.3 萃取total tRNA-----------------------------------------------------------------------22 2.9.4 純化特定tRNA-----------------------------------------------------------------------23 2.10 製備in vitro transcription tRNA ---------------------------------------------------------23 2.11 Aminoacylation assay-----------------------------------------------------------------------24 2.12 Cycloheximide-chase assay ----------------------------------------------------------------25 2.13 Circular dichroism(CD)spectroscopy ------------------------------------------------26 2.14 Fast protein liquid chromatography (FPLC)-----------------------------------------26 第三章 結果 3.1 酵母菌細胞質和粒線體之GluRS差異--------------------------------------------------27 3.2 不同真核生物之GluRSm對酵母菌粒線體互補性測試-------------------------------27 3.3 不同原核生物之GluRS對酵母菌粒線體互補性測試--------------------------------28 3.4 Synechocystis sp.之GluRS在酵母菌內的表現位置------------------------------------28 3.5 ScGluRSc和ScGluRSm之活性測試-------------------------------------------------------29 3.6 古生菌與原核生物GluRS和真核生物GluRSm序列比對-----------------------------30 3.7 酵母菌GRS1和GRS2之細胞質和粒線體的互補性測試--------------------------30 3.8 酵母菌V. polyspora之GlyRS的蛋白質穩定性--------------------------------------31 3.9 酵母菌V. polyspora之GRS1和GRS2之mRNAs的表現-------------------------32 3.10 酵母菌V. polyspora之GlyRS2在細胞內的表現情形------------------------------33 3.11 酵母菌V. polyspora之GlyRS對不同溫度的活性測試----------------------------33 3.12 不同溫度下VpGlyRS的二級結構的穩定性------------------------------------------33 3.13 VpGlyRS1和VpGlyRS2的蛋白質分子型---------------------------------------------34 第四章 討論 4.1 不同物種對酵母菌GluRSm的功能性取代--------------------------------------------35 4.2 預測D-GluRS和ND-GluRS辨識tRNA的部位----------------------------------------35 4.3 真核生物粒線體tRNA的後修飾--------------------------------------------------------36 4.4 真核生物GluRSm辨識tRNA的胺基酸-------------------------------------------------36 4.5 D-GluRS和ND-GluRS之演化假說-------------------------------------------------------37 4.6 酵母菌V. polyspora之GlyRS的功能性取代-----------------------------------------38 4.7 酵母菌GRS2為誘導型基因--------------------------------------------------------------39 4.8 在細胞內酵母菌GlyRS2對高溫具有穩定性------------------------------------------39 4.9 In vitro的酵母菌GlyRS2對高溫度穩定性差------------------------------------------39 4.10 酵母菌VpGlyRS的蛋白質分子型態-----------------------------------------------------40 4.11 酵母菌GlyRS2之生理功能假說---------------------------------------------------------40 參考文獻--------------------------------------------------------------------------------------------------41 圖表--------------------------------------------------------------------------------------------------------46 附錄--------------------------------------------------------------------------------------------------------66

    Antonellis A, Lee-Lin SQ, Wasterlain A, Leo P, Quezado M, Goldfarb LG, Myung K, Burgess S, Fischbeck KH, Green ED (2006) Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons. The Journal of neuroscience : the official journal of the Society for Neuroscience 26: 10397-10406
    Arnez JG, Moras D (1997) Structural and functional considerations of the aminoacylation reaction. Trends in biochemical sciences 22: 211-216
    Becker HD, Reinbolt J, Kreutzer R, Giege R, Kern D (1997) Existence of two distinct aspartyl-tRNA synthetases in Thermus thermophilus. Structural and biochemical properties of the two enzymes. Biochemistry 36: 8785-8797
    Biou V, Yaremchuk A, Tukalo M, Cusack S (1994) The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science (New York, NY) 263: 1404-1410
    Brown JR, Doolittle WF (1999) Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. Journal of molecular evolution 49: 485-495
    Burbaum JJ, Schimmel P (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. The Journal of biological chemistry 266: 16965-16968
    Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF (2011) The RNA Modification Database, RNAMDB: 2011 update. Nucleic acids research 39: D195-201
    Chang KM, Hendrickson TL (2009) Recognition of tRNAGln by Helicobacter pylori GluRS2--a tRNAGln-specific glutamyl-tRNA synthetase. Nucleic acids research 37: 6942-6949
    Chatton B, Walter P, Ebel JP, Lacroute F, Fasiolo F (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. The Journal of biological chemistry 263: 52-57
    Chen SJ, Lee CY, Lin ST, Wang CC (2011) Rescuing a dysfunctional homologue of a yeast glycyl-tRNA synthetase gene. ACS chemical biology 6: 1182-1187
    Chen SJ, Wu YH, Huang HY, Wang CC (2012) Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene. PloS one 7: e33363
    Cusack S (1997) Aminoacyl-tRNA synthetases. Current opinion in structural biology 7: 881-889
    Felter S, Diatewa M, Schneider C, Stahl AJ (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochemical and biophysical research communications 98: 727-734
    Frechin M, Senger B, Braye M, Kern D, Martin RP, Becker HD (2009) Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes & development 23: 1119-1130
    Galani K, Grosshans H, Deinert K, Hurt EC, Simos G (2001) The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. The EMBO journal 20: 6889-6898
    Huang HY, Kuei Y, Chao HY, Chen SJ, Yeh LS, Wang CC (2006) Cross-species and cross-compartmental aminoacylation of isoaccepting tRNAs by a class II tRNA synthetase. The Journal of biological chemistry 281: 31430-31439
    Huot JL, Fischer F, Corbeil J, Madore E, Lorber B, Diss G, Hendrickson TL, Kern D, Lapointe J (2011) Gln-tRNAGln synthesis in a dynamic transamidosome from Helicobacter pylori, where GluRS2 hydrolyzes excess Glu-tRNAGln. Nucleic acids research 39: 9306-9315
    Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V, Rao CV, Tournev I, Gondim FA, D'Hooghe M, Van Gerwen V, Callaerts P, Van Den Bosch L, Timmermans JP, Robberecht W, Gettemans J, Thevelein JM, De Jonghe P, Kremensky I, Timmerman V (2006) Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nature genetics 38: 197-202
    Lamour V, Quevillon S, Diriong S, N'Guyen VC, Lipinski M, Mirande M (1994) Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proceedings of the National Academy of Sciences of the United States of America 91: 8670-8674
    Lapointe J, Duplain L, Proulx M (1986) A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro. Journal of bacteriology 165: 88-93
    Lee J, Hendrickson TL (2004) Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases. Journal of molecular biology 344: 1167-1174
    Lenhard B, Orellana O, Ibba M, Weygand-Durasevic I (1999) tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucleic acids research 27: 721-729
    Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, Helm M, Bujnicki JM, Grosjean H (2013) MODOMICS: a database of RNA modification pathways--2013 update. Nucleic acids research 41: D262-267
    Maniatis A, Tsakanikas S, Stamatellou M, Papanastasiou K (1989) Intermediate-dose melphalan for refractory myeloma. Blood 74: 1177
    Marechal-Drouard L, Ramamonjisoa D, Cosset A, Weil JH, Dietrich A (1993) Editing corrects mispairing in the acceptor stem of bean and potato mitochondrial phenylalanine transfer RNAs. Nucleic acids research 21: 4909-4914
    Martinis SA, Plateau P, Cavarelli J, Florentz C (1999) Aminoacyl-tRNA synthetases: a family of expanding functions. Mittelwihr, France, October 10-15, 1999. The EMBO journal 18: 4591-4596
    McClain WH, Schneider J, Bhattacharya S, Gabriel K (1998) The importance of tRNA backbone-mediated interactions with synthetase for aminoacylation. Proceedings of the National Academy of Sciences of the United States of America 95: 460-465
    Mirande M (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Progress in nucleic acid research and molecular biology 40: 95-142
    Natsoulis G, Hilger F, Fink GR (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243
    Noma A, Sakaguchi Y, Suzuki T (2009) Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic acids research 37: 1335-1352
    Ribas de Pouplana L, Turner RJ, Steer BA, Schimmel P (1998) Genetic code origins: tRNAs older than their synthetases? Proceedings of the National Academy of Sciences of the United States of America 95: 11295-11300
    Rinehart J, Krett B, Rubio MA, Alfonzo JD, Soll D (2005) Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion. Genes & development 19: 583-592
    Schimmel P (1987) Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annual review of biochemistry 56: 125-158
    Schimmel PR, Soll D (1979) Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annual review of biochemistry 48: 601-648
    Schulze JO, Masoumi A, Nickel D, Jahn M, Jahn D, Schubert WD, Heinz DW (2006) Crystal structure of a non-discriminating glutamyl-tRNA synthetase. Journal of molecular biology 361: 888-897
    Senger B, Aphasizhev R, Walter P, Fasiolo F (1995) The presence of a D-stem but not a T-stem is essential for triggering aminoacylation upon anticodon binding in yeast methionine tRNA. Journal of molecular biology 249: 45-58
    Shiba K, Motegi H, Schimmel P (1997) Maintaining genetic code through adaptations of tRNA synthetases to taxonomic domains. Trends in biochemical sciences 22: 453-457
    Szymanski M, Deniziak M, Barciszewski J (2000) The new aspects of aminoacyl-tRNA synthetases. Acta biochimica Polonica 47: 821-834
    Turner RJ, Lovato M, Schimmel P (2000) One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. The Journal of biological chemistry 275: 27681-27688
    Tzagoloff A, Gatti D, Gampel A (1990) Mitochondrial aminoacyl-tRNA synthetases. Progress in nucleic acid research and molecular biology 39: 129-158
    Wu YH, Chang CP, Chien CI, Tseng YK, Wang CC (2013) An insertion peptide in yeast glycyl-tRNA synthetase facilitates both productive docking and catalysis of cognate tRNAs. Molecular and cellular biology 33: 3515-3523
    Zhao Z, Hashiguchi A, Hu J, Sakiyama Y, Okamoto Y, Tokunaga S, Zhu L, Shen H, Takashima H (2012) Alanyl-tRNA synthetase mutation in a family with dominant distal hereditary motor neuropathy. Neurology 78: 1644-1649

    QR CODE
    :::