跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪瑋佟
Wei-Tong Hung
論文名稱: 固態氧化物燃料電池金屬連接板與硬銲接合件潛變性質
Creep Properties for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel Cell
指導教授: 林志光
Chih-Kuang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 94
中文關鍵詞: 金屬支撐型固態氧化物燃料電池硬銲封裝膠金屬連接板潛變性質
外文關鍵詞: Metal-supported solid oxide fuel cell, Braze sealant, Interconnect, Creep property
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對金屬支撐固態氧化物燃料系統硬銲封裝材料,進行與金屬連接板接合之接合件的高溫機械特性分析,探討硬銲填料/金屬連接板接合件於高溫下之潛變性能與破壞模式。實驗結果顯示在未時效狀態及1000小時熱時效處理後,接合件於750 °C氧化環境下的張力及剪力潛變壽命皆隨著負載減少而增加。未時效張力及剪力接合件具1000小時壽命的潛變強度分別為5.48 MPa及3.56 MPa,為未時效接合件高溫張力及剪力強度的41%及35%。而時效處理之張力及剪力接合件具1000小時壽命的潛變強度分別為5.43 MPa及3.64 MPa,分別皆為時效接合件高溫張力及剪力強度的38%。
    在750 °C高溫且接觸到氧氣狀況下,氧化鉻層及銀基銲料層之間會形成橘色片狀的AgCrO2,此種氧化物會在時效處理階段以及潛變試驗中生成,且隨著時間增加而擴大覆蓋面積,並可在裂縫尖端產生鈍化效應提升未時效接合件在中、長斷裂時間下之壽命。因此,在應力-斷裂時間圖中可以看到,未時效張、剪力接合件若在較短時間內(tr < 10 h)未斷裂的話,則幾乎能延後至100小時以後才斷裂。對於時效接合件來說,在進行潛變試驗之前,就已經有AgCrO2的存在,因此相較於未時效接合件,能在較短斷裂時間區間,受相同應力作用下展現較高的壽命;然而隨著未時效接合件中AgCrO2的增加,在較長斷裂時間區間,未時效接合件與時效接合件之壽命則是相差無幾。
    根據破斷面分析得知未時效張力及剪力接合件,在較短斷裂時間下,破斷面主要發生於氧化鉻層及銀基銲料層之間,而隨著AgCrO2的增長,在較長斷裂時間下,破斷面主要介於AgCrO2層及銀基銲料層之間。而時效處理之張力及剪力接合件,在較短斷裂時間下,破斷面發生於氧化鉻層內部或AgCrO2層及銀基銲料層之介面,面積各占一半,而隨著間增加,在較長斷裂時間下,破斷面則是主要介於AgCrO2層及銀基銲料層之間。


    The aim of this study is to investigate the high-temperature creep properties and fracture pattern of the joint between metallic interconnect and braze sealant in metal-supported solid oxide fuel cell system. Experimental results indicate that the creep rupture time of both unaged and aged joints is increased with a decrease in the applied constant shear and tensile loadings at 750 °C. The tensile and shear creep strengths of unaged joints at 1000 h are of 5.48 MPa and 3.56 MPa, respectively, which are about 41% and 35% of the average tensile and shear strengths at 750 °C. The tensile and shear creep strengths of aged joints at 1000 h are of 5.43 MPa and 3.64 MPa, respectively, and are about 38% of the average tensile and shear strengths at 750 °C.
    During the thermal aging process, orange AgCrO2 is formed at the periphery of the joint specimen and is also observed at the interface between the Cr2O3 layer and the braze sealant after creep test at 750 °C in air. The formation of AgCrO2 could effectively retard the growth of crack and extend the creep rupture time of unaged specimens due to bridging effect at crack path and blunting effect at crack tip. Therefore, if the unaged joint specimens can sustain the applied stress at the first 10 h without breakage, they are likely to survive at least 100 h. Despite the fact that aged specimens exhibit a longer creep rupture time than the unaged ones in the short rupture time regime due to the pre-existence of AgCrO2, the unaged and aged specimens show a comparable creep rupture time in the long rupture time regime.
    For unaged tensile and shear joints, fracture occurs at the interface between Cr2O3 layer and braze sealant in the short rupture time regime while the fracture site gradually changes to the interface between the braze sealant and the AgCrO2 layer in the long rupture time regime. On the other hand, for both aged tensile and shear joints, fracture occurs at the interface between AgCrO2 layer and the braze sealant and occasionally within the Cr2O3 layer in most cases. The Cr2O3 layer covers about half of the fracture surface for a short rupture time, and the amount of coverage decreases with an increase in rupture time.

    LIST OF TABLES VI LIST OF FIGURES VII 1. INTRODUCTION 1 1.1 Solid Oxide Fuel Cell 1 1.2 Braze Sealant 3 1.3 Joint of Braze Sealant and Metallic Interconnect 5 1.4 Creep of Joint of Braze Sealant and Metallic Interconnect 7 1.5 Purpose 11 2. MATERIAL AND EXPERIMENTAL PROCEDURES 13 2.1 Material and Specimen Preparation 13 2.2 Creep Test 16 2.3 Microstructural Analysis 18 3. RESAULTS AND DISCUSSION 19 3.1 Oxide Formation 19 3.2 Creep Rupture of Unaged Joint 21 3.2.1 Applied stress versus creep rupture time 21 3.2.2 Failure analysis 24 3.3 Creep Rupture of Aged Joint of Braze Sealant and Metallic Interconnect 45 3.3.1 Oxide formation of AgCrO2 after thermal aging 45 3.3.2 Applied stress versus creep rupture time 47 3.3.3 Failure analysis 50 3.4 Effect of Thermal Aging on the Creep Behavior 64 3.4.1 Comparison of applied stress versus creep rupture time 64 3.4.2 Comparison of fracture pattern 69 4. CONCLUSIONS 72 REFERENCES 74

    1. K. Gurbinder, Solid Oxide Fuel Cell Components: Interfacial Compatibility of SOFC Glass Seals, Springer, New York, pp. 79-161, 2016.
    2. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering: A, Vol. 362, pp. 228-239, 2003.
    3. M. Liu, M. E. Lynch, K. Blinn, F. M. Alamgir, and Y. M. Choi, “Rational SOFC Material Design: New Advances and Tools,” Materials Today, Vol. 14, pp. 534-546, 2011.
    4. T.-L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, pp. 513-519, 2002.
    5. K. S. Chung, Fabrication and Characterization of Metal-Support for Solid Oxide Fuel Cells (MSOFCs), M.S. Thesis, University of Waterloo, Ontario, Canada, 2016.
    6. P. P. Satardekar, Materials Development for the Fabrication of Metal Supported-Solid Oxide Fuel Cells by Co-Sintering, Ph.D. Thesis, University of Trento, Italy, 2014.
    7. A. M. Dayaghi, K. J. Kim, S. W. Kim, J. Park, S. J. Kim, B. H. Park, and G. M. Choi, “Stainless Steel-Supported Solid Oxide Fuel Cell with La0.2Sr0.8Ti0.9Ni0.1O3-δ/Yttria-Stabilized Zirconia Composite Anode,” Journal of Power Sources, Vol. 324, pp. 288-293, 2016.
    8. V. V. Krishnan, “Recent Developments in Metal‐Supported Solid Oxide Fuel Cells,” WIREs Energy and Environment, Vol. 6, e246, 2017.
    9. Y. Larring and M.-L. Fontaine, “Critical Issues of Metal-Supported Fuel Cell,” in Solid Oxide Fuels Cells: Facts and Figures, edited by J. T. S. Irvine, and P. Connor, Springer, London, pp. 71-93, 2013.
    10. M. C. Tucker, “Progress in Metal-Supported Solid Oxide Fuel Cells: A Review,” Journal of Power Sources, Vol. 195, pp. 4570-4582, 2010.
    11. S. Le, Z. Shen, X. Zhu, X. Zhou, Y. Yan, K. Sun, N. Zhang, Y. Yuan, and Y. Mao, “Effective Ag-CuO Sealant for Planar Solid Oxide Fuel Cells,” Journal of Alloys and Compounds, Vol. 496, pp. 96-99, 2010.
    12. M. Singh, T. P. Shpargel, and R. Asthana, “Brazing of Zttria-Stabilized Zirconia (YSZ) to Stainless Steel,” Journal of Materials Science, Vol. 43, pp. 23-32, 2008.
    13. J. Y. Kim, J. S. Hardy, and S. Weil, “Dual-Atmosphere Tolerance of Ag-CuO-Based Air Braze,” International Journal of Hydrogen Energy, Vol. 32, pp. 3655-3663, 2007.
    14. K.-L. Lin, M. Singh, R. Asthana, and C.-H. Lin, “Interfacial and Mechanical Characterization of Yttria-Stabilized Zirconia (YSZ) to Stainless Steel Joints Fabricated Using Ag-Cu-Ti Interlayers,” Ceramics International, Vol. 40, pp. 2063-2071, 2014.
    15. L.-W. Huang, Y.-Y. Wu, and R.-K. Shiue, “The Effect of Oxygen Pressure in Active Brazing 8YSZ and Crofer 22 H Alloy,” Journal of Materials Research and Technology, Vol. 10, pp. 1382-1388, 2021.
    16. X. Si, J. Cao, I. Ritucci, B. Talic, J. Feng, and R. Kiebach, “Enhancing the Long-Term Stability of Ag Based Seals for Solid Oxide Fuel/electrolysis Applications by Simple Interconnect Aluminization,” International Journal of Hydrogen Energy, Vol. 44, pp. 3063-3074, 2019.
    17. X. Si, J. Cao, B. Talic, I. Ritucci, C. Li, J. Qi, J. Feng, and R. Kiebach, “A Novel Ag Based Sealant for Solid Oxide Cells with a Fully Tunable Thermal Expansion,” Journal of Alloys and Compounds, Vol. 831, 154608, 2020.
    18. Q. Zhou, T. R. Bieler, and J. D. Nicholas, “Transient Porous Nickel Interlayers for Improved Silver-Based Solid Oxide Fuel Cell Brazes,’’ Journal of Acta Materialia, Vol. 148, pp. 156-162, 2018.
    19. T. Bause, J. Malzbender, M. Pausch, T. Beck, and L. Singheiser, “Damage and Failure of Silver Based Ceramic/Metal Joints for SOFC Stacks,’’ Journal of Fuel Cells, Vol. 13, pp. 578-583, 2013.
    20. N. E. Dowling, S. L. Kampe, and M. V. Kral, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 5th Ed., Pearson Education, Harlow, UK, pp. 777-840, 2020.
    21. Y.-C. Zhang, W. Jiang, S.-T. Tu, C.-L. Wang, and C. Cheng, “Effect of Operating Temperature on Creep and Damage in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell,” International Journal of Hydrogen Energy, Vol. 43, pp. 4492-4504, 2018.
    22. S. J. Kim, M.-B. Choi, M. Park, H. Kim, J.-W. Son, J.-H. Lee, B.-K. Kim, H.-W. Lee, S.-G. Kim, and K. J. Yoon, “Acceleration Tests: Degradation of Anode-Supported Planar Solid Oxide Fuel Cells at Elevated Operating Temperatures,” Journal of Power Sources, Vol. 360, pp. 284-293, 2017.
    23. Y.-S. Chou, J. W. Stevenson, and J.-P. Choi, “Long-Term Evaluation of Solid Oxide Fuel Cell Candidate Materials in a 3-Cell Generic Short Stack Fixture, Part II: Sealing Glass Stability, Microstructure and Interfacial Reactions,’’ Journal of Power Sources, Vol. 250, pp. 166-173, 2014.
    24. D. Ciria, M. Jiménez-Melendo, V. Aubin, and G. Dezanneau, “Creep Properties of High Dense La9.33Si6O26 Electrolyte for SOFCs,’’ Journal of the European Ceramic Society, Vol. 40, pp. 1989-1998, 2020.
    25. J. Laurencin, G. Delette, F. Usseglio-Viretta, and S. Di Iorio, “Creep Behaviour of Porous SOFC Electrodes: Measurement and Application to Ni-8YSZ Cermets,’’ Journal of the European Ceramic Society, Vol. 31, pp. 1741-1752, 2011.
    26. H. L. Frandsen, M. Makowska, F. Greco, C. Chatzichristodoulou, D. W. Ni, D. J. Curran, M. Strobl, L. T. Kuhn, and P. V. Hendriksen, “Accelerated Creep in Solid Oxide Fuel Cell Anode Supports During Reduction,” Journal of Power Sources, Vol. 323, pp. 78-89, 2016.
    27. F. Greco, H. L. Frandsen, A. Nakajo, M. F. Madsen, and J. Van herlea, “Modelling the Impact of Creep on the Probability of Failure of a Solid Oxide Fuel Cell Stack,’’ Journal of the European Ceramic Society, Vol. 34, pp. 2695-2704, 2014.
    28. J. Wei and J. Malzbender, “Steady State Creep of Ni-8YSZ Substrates for Application in Solid Oxide Fuel and Electrolysis Cells,” Journal of Power Sources, Vol. 360, pp. 1-10, 2017.
    29. A. Nakajo, J. Kuebler, A. Faes, U. F. Vogt, H. J. Schindler, L.-K. Chiang, S. Modena, J. Van herle, and T. Hocker, “Compilation of Mechanical Properties for the Structural Analysis of Solid Oxide Fuel Cell Stacks. Constitutive Materials of Anode-Supported Cells,” Ceramics International, Vol. 38, pp. 3907-3927, 2012.
    30. C.-K. Lin, K.-L. Lin, J.-H. Yeh, S.-H. Wu, and R.-Y. Lee, “Creep Rupture of the Joint of a Solid Oxide Fuel Cell Glass-Ceramic Sealant with Metallic Interconnect,’’ Journal of Power Sources, Vol. 245, pp. 787-795, 2014.
    31. C.-K. Lin, T.-W. Lin, S.-H. Wu, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Creep Rupture of the Joint Between a Glass-Ceramic Sealant and Lanthanum Strontium Manganite-Coated Ferritic Stainless Steel Interconnect for Solid Oxide Fuel Cells,’’ Journal of the European Ceramic Society, Vol. 38, pp. 2417-2429, 2018.
    32. C. Y. S. Chang, W. C. J. Wei, and C. H. Hsueh, “Viscosity of Ba-B-Si-Al-O Glass Measured by Indentation Creep Test at Operating Temperature of IT-SOFC,’’ Journal of Non-Crystalline Solids, Vol. 357, pp. 1414-1419, 2011.
    33. Y. Wang, W. Jiang, M. Song, Y. Zhang, and S.-T. Tu, “Effect of Frame Material on the Creep of Solid Oxide Fuel Cell,’’ International Journal of Hydrogen Energy, Vol. 44, pp. 20323-20335, 2019.
    34. Y.-C. Zhang, H.-Q. Zhao, W. Jiang, S.-T. Tu, X.-C. Zhang, and R.-Z. Wang, “Time Dependent Failure Probability Estimation of the Solid Oxide Fuel Cell by a Creep-Damage Related Weibull Distribution Model,’’ International Journal of Hydrogen Energy, Vol. 43, pp. 13532-13542, 2018.
    35. J. Milhans, M. Khaleel, X. Sun, M. Tehrani, M. Al-Haik, and H.Garmestani, “Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18,” Journal of Power Sources, Vol. 195, pp. 3631-3635, 2010.
    36. J. Milhans, D. S. Li, M. Khaleel, X. Sun, M. Al-Haik, A. Harris, and H. Garmestani, “Mechanical Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal at High Temperatures,” Journal of Power Sources, Vol. 196, pp. 5599-5603, 2011.
    37. C.-K. Lin, K.-L. Lin, J.-H. Yeh, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Aging Effects on High-Temperature Creep Properties of a Solid Oxide Fuel Cell Glass-Ceramic Sealant,” Journal of Power Sources, Vol. 241, pp. 12-19, 2013.
    38. J. Malzbender, Y. Zhao, and T. Beck, “Fracture and Creep of Glass-Ceramic Solid Oxide Fuel Cell Sealant Materials,” Journal of Power Sources, Vol. 246, pp. 574-580, 2014.
    39. E. V. Stephens, J. S. Vetrano, B. J. Koeppel, Y. Chou, X. Sun, and M. A. Khaleel, “Experimental Characterization of Glass-Ceramic Seal Properties and Their Constitutive Implementation in Solid Oxide Fuel Cell Stack Models,” Journal of Power Sources, Vol. 193, pp. 625-631, 2009.
    40. H.-L. Hsu, Environmental Effects on the Creep Properties of Joints in Solid Oxide Fuel Cell, M.S. Thesis, Tao-Yuan, National Central University, 2015.
    41. W. Jiang, Y. Zhang, Y. Luo, J. M. Gong, and S. T. Tu, “Creep Analysis of Solid Oxide Fuel Cell with Bonded Compliant Seal Design,” Journal of Power Sources, Vol. 243, pp. 913-918, 2013.
    42. Y.-C. Zhang, W. Jiang, S.-T. Tu, and J.-F. Wen, “Simulation of Creep and Damage in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell,’’ International Journal of Hydrogen Energy, Vol. 39, pp. 17941-17951, 2014.
    43. Y.-C. Zhang, W. Jiang, S.-T. Tu, J.-F. Wen, and W. Woo, “Using Short-Time Creep Relaxation Effect to Decrease the Residual Stress in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell - A Finite Element Simulation,” Journal of Power Sources, Vol. 255, pp. 108-115, 2014.
    44. L. Esposito, D. N. Boccaccini, G. P. Pucillo, and H. L. Frandsen, “Secondary Creep of Porous Metal Supports for Solid Oxide Fuel Cells by a CDM Approach,” Materials Science and Engineering: A, Vol. 691, pp. 155-161, 2017.
    45. Y.-C. Zhang, X.-T. Yu, W. Jiang, S.-T. Tu, X.-C. Zhang, and Y.-J. Ye, “Creep Fracture Behavior of the Crofer 22 APU for the Interconnect of Solid Oxide Fuel Cell Under Different Temperatures,’’ International Journal of Hydrogen Energy, Vol. 45, pp. 4829-4840, 2020.
    46. J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser, and W. J. Quadakkersa, “Development of High Strength Ferritic Steel for Interconnect Application in SOFCs,” Journal of Power Sources, Vol. 178, pp. 163-173, 2008.
    47. B. Kuhn, C. A. Jimenez, L. Niewolak, T. Hüttel, T. Beck, H. Hattendorf, L. Singheiser, and W. J. Quadakkers, “Effect of Laves Phase Strengthening on The Mechanical Properties of High Cr Ferritic Steels for Solid Oxide Fuel Cell Interconnect Application,” Materials Science and Engineering: A, Vol. 528, pp. 5888-5899, 2011.
    48. Y.-T. Chiu, C.-K. Lin, and J.-C. Wu, “High-Temperature Tensile and Creep Properties of a Ferritic Stainless Steel for Interconnect in Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 196, pp. 2005-2012, 2011.
    49. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
    50. D. N. Boccaccini, H. L. Frandsen, B. R. Sudireddy, P. Blennow, Å. H. Persson, K. Kwok, and P. V. Hendriksen, “Creep Behaviour of Porous Metal Supports for Solid Oxide Fuel Cells,’’ International Journal of Hydrogen Energy, Vol. 39, pp. 21569-21580, 2014.
    51. Y.-T. Chiu, Creep and Thermo-Mechanical Fatigue Properties of Ferritic Stainless Steels for Use in Solid Oxide Fuel Cell Interconnect, Ph.D. Thesis, Tao-Yuan, National Central University, 2012.
    52. L.-W. Huang, C.-K. Liu, Y.-N. Cheng, and R.-Y. Lee, Brazing Material Composition and Manufacturing Method Thereof, ROC Patent No. I634220, 2018.
    53. Y.-W. Tseng, Mechanical Properties and Stress Analysis for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel, M.S. Thesis, National Central University, Tao-Yuan, 2020.
    54. S. W. Sofie, P. Gannon, and V. Gorokhovsky, “Silver-Chromium Oxide Interactions in SOFC Environments,” Journal of Power Sources, Vol. 191, pp. 465-472, 2009.
    55. H.-Y. Chiang, Chemical Reaction Between Fe-Si-Cr Alloy Powder and Inner Electrode Ag During Co-Firing for Multilayer Alloy Power Inductors, M.S. Thesis, National Cheng Kung University, Tainan, 2018.
    56. B. M. Abu-Zied and T. T. Ali, “Fabrication, Characterization, and Catalytic Activity Measurements of Nano-Crystalline Ag-Cr-O Catalysts,” Journal of Applied Surface Science, Vol. 457, pp. 1126-1135, 2018.
    57. B. M. Abu-Zied, “Structural and Catalytic Activity Studies of Silver/Chromia Catalysts,” Journal of Applied Catalysis A: General, Vol. 198, pp. 139-153, 2000.
    58. F. Kundie, C. H. Azhari, A. Muchtar, and Z. A. Ahmad, “Effects of Filler Size on the Mechanical Properties of Polymer-Filled Dental Composites: A Review of Recent Developments,” Journal of Physical Science, Vol. 29, pp. 141-165, 2018.
    59. J. J. Kruzic, R. K. Nalla, J. H. Kinney, and R.O. Ritchie, “Crack blunting, Crack bridging and Resistance-Curve Fracture Mechanics in Dentin: Effect of Hydration,” Journal of Biomaterials, Vol. 24, pp. 5209-5221, 2003.
    60. Y. Shao, H.-P. Zhao, X.-Q. Feng, and H. Gao, “Discontinuous Crack-Bridging Model for Fracture Toughness Analysis of Nacre,” Journal of the Mechanics and Physics of Solids, Vol. 60, pp. 1400-1419, 2012.
    61. J. A. De Souza, S. Goutianos, M. Skovgaard, and B. F. Sørensen, “Fracture Resistance Curves and Toughening Mechanisms in Polymer Based Dental Composites,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, pp. 558-571, 2011.
    62. V. Tvergaard, “On Fatigue Crack Growth in Ductile Materials by Crack-Tip Blunting,” Journal of the Mechanics and Physics of Solids, Vol. 52, pp. 2149-2166, 2004.
    63. D. J. Nicholls, “The Relation Between Crack Blunting and Fatigue Crack Growth Rates,” International Journal of Fatigue, Vol. 17, pp. 449, 1995.
    64. V. P. Rajan and W. A. Curtin, “Crack Tip Blunting and Cleavage Under Dynamic Conditions,” Journal of the Mechanics and Physics of Solids, Vol. 90, pp. 18-28, 2016.

    QR CODE
    :::