| 研究生: |
施睿 Rui Shih |
|---|---|
| 論文名稱: |
沖積扇開析過程之實驗分析 Experimental analysis of the alluvial fans dissection process |
| 指導教授: |
周憲德
Hsien-Ter Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 沖積扇 、開析 、水流功率 、滲流 、複成扇 、篩堆積 |
| 外文關鍵詞: | Alluvial Fan, Dissection, Stream Power, Infiltration, Composite Alluvial Fan, Sieve Lobe |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討不同水流功率對於沖積扇開析型態之影響,實驗所使用的顆粒均為石英砂,透過調整水流量與扇面坡度來改變水流功率,實驗過程使用相機記錄影像並進行分析量化。水流由供水渠道輸送至堆積平台上預先堆好之乾砂沖積扇,待水流匯集形成渠道後,下切侵蝕扇面並將沖刷出的顆粒帶至扇端堆積成複成扇。在實驗過程中觀察到水流在匯集形成渠道前,因部分水流入滲至扇面土體導致扇面逕流變少而形成篩堆積,為觀察滲流對沖積扇開析過程的影響,因此另外以飽和的濕砂堆積沖積扇進行實驗。同時,也進行滲流實驗以討論扇面滲流破壞之位置。從實驗觀察中發現,水流功率與沖積扇的開析時間和開析速度呈高度正相關,且在濕砂堆積扇實驗中水流不會形成篩堆積。乾濕砂堆積扇之開析條件約為單位寬水流功率ω>1.5 kg⁄s^3 。水流量愈高則渠道的側向侵蝕能力愈大,而在渠寬較大的實驗中,渠道流更傾向於側向而非下切侵蝕。在流量較高的實驗中渠道在實驗過程中皆保持一定的側向侵蝕能力,而下切侵蝕則在實驗初期較大,隨著實驗時間逐漸趨緩。B⁄y_c 為一定值且幾乎不受單位寬水流功率所影響,渠道的下切與側向侵蝕能力成反比。
This study describes and discusses the influence of different stream powers on the dissection of alluvial fans. The particles used in the experiment are all silica sand. Adjusting the water discharge and the slope of the fan to control stream power. A camera is used to record images during the whole experiment. Water is supplied from a channel to an alluvial fan on the platform. After the flow forms a channel, the fan surface is incised by the channel and lead to dissection. The flow brings the eroded particles from the fan surface to fan toe and forms a new composite fan.
During the experiment, it was observed that before the forming of a channel, the runoff is reduced due to infiltration at the fan surface and sieve lobes occur. We also did experiments to observe the influence of seepage on the fan. We found stream power is correlated with the progress of alluvial fans dissection.
The opening conditions of the dry and wet alluvial fans are about unit width stream power ω>1.5 kg⁄s^3 . B⁄y_c have a certain value under any unit width stream power, and the ability of channel incision is inversely proportional to channel lateral erosion.
1. 石再添(1973),地形學講義,中山科學大辭典第六冊地球科學,頁219。
2. 吳俊銓 (2012),「山洪濁流形成沖積扇之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。
3. 周憲德、曹鼎志、李璟芳(2020),堆積扇地貌特性與土砂災害類型之探討,水土保持局成果報告書,第2-4頁。
4. 胡弘耀(2019),「滲流效應及水砂條件對沖積扇堆積型態之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
5. 楊淑君(1996),「台灣沖積扇之地形學研究」,博士論文,國立臺灣師範大學地理學系,台北。
6. Allen, J. R. L., 1965. A review of the origin and characteristics of recent alluvial sediments. Sedimentology 5, 89–191.
7. Blair, T. C., McPherson, J. G., 1994. Alluvial Fan Processes and Forms. Geomorphology of Desert Environments, 354–402.
8. Blainey, J. B., Pelletier, J. D., 2008. Infiltration on alluvial fans in arid environments: Influence of fan morphology. JGR: Earth Surface 113, F03008.
9. Blissenbach, E., 1954. Geology of alluvial fans in semiarid regions. GSA Bulletin 65, 175–190.
10. Bull, W. B., 1979. The threshold of critical power in streams. Geological Society of America Bulletin 90, 453–464.
11. Clarke, L., Quine, T. A., 2010. Nicholas, A., An experimental investigation of autogenic behaviour during alluvial fan evolution. Geomorphology 115, 278–285.
12. Crosta, G. B., Frattini, P., 2004. Controls on modern alluvial fan processes in the central Alps, Northern Italy. Earth Surface Processes and Landforms, 267–293.
13. Eckis, R., 1928. Alluvial fans of the Cucamonga District, Southern California. The Journal of Geology 36(3), 224–247.
14. French, R. H., 1987. Hydraulic processes on alluvial fans, Volume 31, 1st Edition, 63.
15. Harvey, A., 2011. Dryland alluvial fans. Arid Zone Geomorphology: Process, Form and Change in Drylands, Third Edition, 333–371.
16. Harvey, A., 2012. The coupling status of alluvial fans and debris cones: a review and synthesis. Earth Surface Processes and Landforms 37(1), 64–76.
17. Hooke, R. L., 1967. Processes on arid-region alluvial fans. The Journal of Geology 75, no. 4, 438–460.
18. Hooke, R. L., 1968, Model geology: Prototype and laboratory streams: Discussion. GSA Bulletin 79, 391–394.
19. Reitz , M. D., Jerolmack, D. J., 2012. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth. JGR: Earth Surface 117.