| 研究生: |
希蘇葳 Ristu Widaya |
|---|---|
| 論文名稱: |
建築物雙層牆節能效果評估之研究 PERFORMANCE EVALUATION OF DOUBLE WALL IN REDUCING BUILDING ENERGY CONSUMPTION |
| 指導教授: |
黃榮堯
Rong-yau Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木系營建管理碩士班 Master's Program in Construction Management, Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 雙層牆體 、能源消耗 、DesignBuilder |
| 外文關鍵詞: | double wall, cooling energy consumption, DesignBuilder |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,全球暖化與能源浪費之議題已經受到矚目。由於,建築物之使用階段將消耗大量能源,亦造成大量二氧化碳之排放,因此如何減少能源消耗係為管控之關鍵。而隨著建築技術、設計與材料之改善,雙層牆體(Double wall)已是現今常見的建築構件之一。根據相關研究成果指出,妥善規劃雙層牆體,可有效減緩室內溫度變化之程度,達降低溫度及減少冷卻溫度所需之能耗。惟這些研究中仍有不少因素尚未詳加考量,諸如牆體材料、牆體間之空隙,或是設置方位等。有鑑於改善能源消耗之重要性,本研究目的在於探討牆體材料與牆體間之空隙之最佳組合,並分析設置於建築物各方位之影響,以研析降低能源消耗之可能。
本研究運用DesignBuilder軟體中的EnergyPlus模組,進行各項材料與牆體間空隙之模擬。根據模擬成果可發現,若在建築物四周皆設置雙層磚牆,而且保持100mm的空隙,每年將可節省高達31,90% 的能源消耗。模擬內容反應出,雙層牆體之運用需視建築物各側陽光影響變化,有所差異;材料的U值亦直接影響雙層牆體之效能;牆體間之空隙與降低能源消耗成反比成長,而超過100mm以上之空隙,其影響將趨於平緩。
In recent years, global warming and recklessness of the energy has significant attention to be avoided. Building is one of the biggest energy consumer and largest contributors to the increase of CO2. Double wall is one of the building element method which became popular to utilized in recent years. Several studies mentioned this method can be reduced the impact of fluctuative temperature. Although some of the studies have been done to prove that this method can be reduced the air temperature and cooling energy demand, the particular application of double wall with the regularity among materials, air gaps and other parameters such as buildings side orientation are no attention to date. Hence, it may raise the question, which double-wall combination can work as its optimum to reduce cooling energy demand. Based on these background issue, this study aim is to investigate the optimum combination of materials and air gaps of double wall in terms of reducing cooling energy consumption and also to investigate the impact of the buildings side orientation in double wall utilization. In order to determine these result, this study was simulated by using EnergyPlus in DesignBuilder software. The result obtained that double wall utilization with combination between double block and 100mm air gap in all of the building sides was given the significant impact into cooling energy consumption reduction up to 31,90% in a year. Double wall utilization is depending on the buildings side orientation because of the different amount of solar heat gain. U-value of the materials are also affected into the double wall performance. The cooling energy consumption reduction is inversely proportional by the increasing the air gap width. But, by increasing air gap of 100mm width or above is only help the percentage of reduction in smaller amount.
[1] Taiwan Green Building Label. On March 2014. http://twgbqanda.com/english/e_earth.php?Type=1&menu=e_earth_class&pic_dir_list=0
[2] Radhi Hassan. 2010. On the Effect of Global Warming and the UAE Built Environment. Faculty of Engineering, UAE.
[3] U.S. International Energy Agency. 2013. Transition to Sustainable Buildings. IEA, Washington, D.C.
[4] http://www.c2es.org/technology/factsheet/BuildingEnvelope
[5] Denzil Nield. 1949. Walls & Wall Facings. London
[6] New Civil Engineer. Oct 3rd, 1991. Single leaf wall with vertical and lateral load. Thomas Telford Ltd. London.
[7] Emmitt S. and A. Gorse C. 2010. Barry's Introduction to Construction of Buildings. Wiley-Blackwell, John Wiley & Sons Ltd.
[8] Yeomans David. 1997. Construction Since 1900: Materials. London.
[9] UWE Bristol. 2006. External Loadbearing Walls.
[10] Al-Jabri K. S., et all. 2005. Concerete Blocks for Thermal Insulation in Hot Climate. UK: Elsevier.
[11] M.h. de Wit., et all. 2009. Heat Exchange Between Inner and Outer Leaf of A cavity wall.
[12] iPHA (The International Passive House Association). On March 2014. http://passipedia.passiv.de/passipedia_en/planning/thermal_protection/integrated_thermal_protection.
[13] Künzel, H. 1998. Zweischlaiges Mauerwerk–mit Oder Ohne Belüftung?’ (A Double-Wall Masonry with or without Ventilation?). Germany.
[14] Thermal Performance of Buildings. On April 2014. http://mnre.gov.in/solar-energy/ch4.pdf
[15] Coulibaly. O., et all. 2013. Thermal Performances of A Bioclimatic Building in Hot And Dry Tropical Climate. Revue des Energies Renouvelables.
[16] Bekkouche S. M. A., et all. 2013. Thermal Resistances of Air in Cavity Walls and Their Effect upon The Thermal Insulation Performance. International Journal of Energy and Environment.
[17] W. Yagoub, S. Appleton, and W. Stevens. 2010. Case Study of Double Skin Façade in Hot Climates. Presented at the Adapting to Change: New Thinking on Comfort, London,
[18] P. Roelofsen. 2002. Ventilated Facades Climate Facade versus Double-Skin Facade. European Consulting Engineering Network.
[19] Suárez María José., et all. 2012. Energy Evaluation of An Horizontal Open Joint Ventilated Façade. Sciencedirect Applied Thermal Engineering Journal.
[20] Giancola E., et all. 2010. Numerical and Experimental Analysis of An Openjoint Ventilated Façade. SimBuild 2010, 4th National Conference of IBPSA-USA.
[21] Torcellini P. and Pless S. 2004. Trombe Walls in Low-Energy Buildings: Practical Experiences. Congress VIII and Expo Denver, Colorado.
[22] U.S. Environmental Protection Agency (EPA). 2008. Reducing Urban Heat Island: Compendium of Strategies. EPA, Washington, D.C.
[23] Asaeda, Takashi, Vu Thanh Ca. 2000. Characteristics of Permeable Pavement During Hot Summer Weather and Impact on The Thermal Environment. Building and Environment.
[24] Mora Pérez Miguel, et all. 2013. CFD Model of Air Movement in Ventilated Façade: Comparison between Natural and Forced Air Flow. International Journal of Energy and Environment.
[25] Theodosiou T.G. and Papadopoulos A.M. 2008. The Impact of Thermal Bridges on The Energy Demand of Buildings with Double Brick Wall Constructions. UK: Elsevier.
[26] Missoum A., et all. 2011. Numerical Simulation of Heat Transfer through A Double-walled Facade Building in Arid Zone. UK: Elsevier.
[27] Seferis P., et all. 2011. Investigation of The Performance of a Ventilated Wall. UK: Elsevier.
[28] High Performance Commmercial Buildings. On April 2014. www.nrel.gov/docs/fy01osti/30171.pdf
[29] Brick Industry Association. 1981. Technical Notes on Brick Construction - Passive Solar Heating with Brick Masonry. Reprinted with permission from the 1972 ASHRAE Handbook of Fundamentals Volume.
[30] DesignBuilder. 2009. DesignBuilder 2.1 User's Manual.