| 研究生: |
黃中岑 Zhong-Chen Huang |
|---|---|
| 論文名稱: |
光纖材料之靜力疲勞可靠度分析 |
| 指導教授: |
王國雄
Kuo-Shong Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 光纖 、靜力疲勞 、可靠度 |
| 外文關鍵詞: | fiber, Static Fatigue, reliability |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多文獻常以韋伯可靠度退化模式來描述整個可靠度隨時間退化的行為,而本文主要在於討論光纖在靜態應力作用下的疲勞現象,並使用CN模型加以描述光纖之退化模式。由於光纖之破壞機制為應力腐蝕,因此可以針對化學(腐蝕)和力學(應力強度因子)這兩領域各做不同的研究與發展。本文既是以化學方面的失效機制為出發點,再以CN模型描述光纖可靠度退化行為模式,並藉由所得到之參數與施加之應力或應變做討論,求其兩者之間的關係式,以推導出光纖壽命之預估公式。
並就所推導出的壽命預估公式與文獻所提之導入應力強度因子的概念所推導出之壽命預估公式做比較。在所施加之應力或應變為零與無限大時,本文所由CN模型所發展出的壽命預估公式,較能符合光纖退化之自然現象。
[1]Dowlatshshahi S, ”A Morphological Approach to Product Design in a Concurrent Engineering Environment”, The International Journal of Advanced Manufacturing Technology, Vol. 9, pp. 324-332, 1994.
[2]K. S. Wang, S. T. Chang and Y. C. Shen, “Dynamic Reliability Models for Fatigue
Crack Growth Problem”, Journal of Engineering Fracture Mechanics, Vol. 54, No. 4, pp. 543-556, 1996.
[3]K. S. Wang, C. S. Chen and J. J. Huang, “Dynamic Reliability Behavior for Sliding Wear of Carburized Steel”, Reliability Engineering & System Safety, 1996.
[4]王碩銘,“潛變-破裂動態可靠度退化模式之探討“,國立中央大學碩士論文,1994。
[5]Kapur, K. C., and Lamberson, L. R., Reliability in Engineering Design, John Wiley & Sons, N. Y., 1977.
[6]Bompas-Smith, J. H., ”The Determination of Distributions that Describe the Failure of Mechanical Components, ”Annals of Assurance Science, N. Y, 1969.
[7]沈盈志,“金屬材料疲勞累積效應與可靠度關係之探討“,國立中央大學博士論文,1997。
[8]王國雄,許芳勳,張豪麟,“系統損傷累積與可靠度關係的探討“,已接受於中華民國力學學會期刊,2000。
[9]張豪麟,“系統動態可靠度與其失效率關係的探討“,國立中央大學碩士論文,1999。
[10]Paris, P. C., and Erdogan, F., “A Critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, Trans. ASME, Series D., 85, pp. 528-534, 1963.
[11]許方勳,“動態可靠度模型之探討及其應用“,國立中央大學博士論文,2001。
[12]徐盛峰,“低通濾波器設計可靠度分析“,國立中央大學碩士論文,2001。
[13]梁伯任,“材料強度退化與累積損傷之探討“,國立中央大學碩士論文,2000。
[14]石逸群,“累積失效與可靠度關係之探討“,國立中央大學碩士論文,2000。
[15]John, B. W., “Subcritical Crack Propagation,” Mechanical Properties of Ceramics. pp. 117-140, 1996.
[16]潘金龍,“玻璃工藝學“,1996。
[17]Charles, R. J., “Static Fatigure of Glass I & II,” Journal of Applied Physics, Vol. 29, No. 11, pp.1548-1560, 1958.
[18]Charles, K. K., ”Physical Properties of Optical Fiber Waveguides,” Optical Fiber Systerm pp. 45-62, 1982.
[19]Charles, R. J., “Dynamic Fatigue of Glass,” Journal of Applied Physics, Vol. 29, No. 12, pp.1657-1661, 1958.
[20]Kalish, D. K., and Tariyal, B.K., “Static and Dynamic Fatigue of a Polymer-Coated Fused Silica Optical Fiber,” Journal of The American Ceramic Society, Vol. 61, No. 11-12, pp. 518-523, 1978.
[21]Wiederhorn, S. M., and Bolz, L. H., “Stress Corrosion and Static Fatigue of Glass,” Journal of The American Ceramic Society, Vol. 54, No. 10, pp.543-548, 1970.
[22]Robinson, R. S., “Surface Roughness Contribution to Zero-Stress Aging,” Journal of the American Ceramic Society, Vol. 74, No. 4, pp. 814-818, 1991.
[23]Ritter, Jr. J. E., “Probability of Fatigue Failure in Glass Fibers,” Fiber and Integrated Optics, Vol. 1, No. 4, pp. 337-399, 1978.
[24]Krause, J. T., “Zero Stress Strength Reduction and Transitions in Static Fatigue of Fused Silica Fiber Lightguides,” Journal of Non-Crystalline Solids, Vol. 38 & 39, pp. 497-502, 1980.
[25]France, P. W., Duncan, W. J., Smith, D. J., and Beales, K. J., “Strength and Fatigure of Muticomponent Optical Glass Fibers,” Journal of Materials Science, Vol. 18, pp. 785-792, 1983.
[26]Ritter, Jr. J. E., Sullivan, J. M., and Jakus, K., “Application of Fracture-Mechanics Theory to Fatigue Failure of Optical Glass Fiber,” Journal of Applied Physics, Vol. 49, No. 9, pp. 4779-4881, 1978.
[27] Rackwitz,R.and Fiessler,B.,Practical probabilistic to design,Bulletin,Nol.112,Comite European du Beton,Paris,France,1976.