| 研究生: |
邱奕霖 Yi-Lin Chiou |
|---|---|
| 論文名稱: |
地表過程蒸發散之觀測與分析 |
| 指導教授: |
李明旭
Ming-Shu Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 蒸發散 、土壤含水量 |
| 外文關鍵詞: | soil water content, evapotranspiration |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究建立垂直整合之水文氣象即時觀測系統,探討地表過程之蒸發散特性。主要利用垂直多點量測的土壤水分觀測儀器(Capacitance Probe),即時觀測土壤水分變動,以估計非降雨條件下之地表過程蒸發散造成的土壤水分損失,並與其他採用微氣象觀測資料推估蒸發散的方法(Penman-Monteith法、Priestley-Taylor法、Bowen ratio法及空氣動力法)作比較分析。研究分析時,分別以日平均資料進行長期年間蒸發散量變化討論;以及10分鐘資料探討微氣象因子對短期日間蒸發散量的影響。
長期年間研究結果顯示,當土壤潮濕時以Penman-Monteith、Priestley-Taylor和Bowen ratio法,所估計的蒸發散量與土壤水分損失量相似;土壤乾燥時,估計蒸發散量和土壤水分損失量的比值會與表層土壤含水量呈現指數關係。利用建立的指數關係式將改善土壤乾燥低含水量時的蒸發散估計,修正後的四種方法以Penman-Monteith法估計之蒸發散量與土壤水分損失量的差異最小,但此方法估計時所需氣象資料最多;而以空氣動力法所推估的蒸發散量與土壤水分損失量差異最大。
短期日間的研究結果,當環境潮濕時,蒸發散量的推估以Penman-Monteith法計算之蒸發散量最為接近土壤水分損失量;Priestley-Taylor法因只考慮地表可利用能量,無法反映出能量外的其他氣象因子影響;Bowen ratio法受到方法本身的限制,不適用於短期日間,高時間解析度的蒸發散估計。
Abstract
This study developed a vertically integrated hydrological and meteorological real-time monitoring system to investigate the evapotranspiration (ET) of land processes. The multisensor capacitance probe was applied to measure the variation of soil water content for determining the loss of soil water accounting for ET over dry days. The results were compared with other micro-meteorological methods, including the Penman-Monteith equation, the Priestley-Taylor equation, the Bowen ratio method, and the vapor gradient method, for estimating ET or potential ET. The discussions were presented in two parts, the first one used daily average data to analyze the daily ET variations; the second part used ten-minute resolution data to analyze the diurnal ET variation associated with the micro meteorological factors.
The results of the daily analyses were given as the following. Under wet soil conditions, the amounts of ETs estimated by the Penman-Monteith equation, the Priestley-Taylor equation, and the Bowen ratio method showed the similar values with the measured loss of soil water. Under dry soil conditions, the ratios of the estimated ETs to the measured soil-water losses associated with the surface soil water content were found to have an exponential relation. With this exponential relation, the differences between the estimated ET and the water loss can be reduced. Among all methods compared in this study, the Penman-Monteith equation is the best one to estimate ET and the only draw back is the requirement of numerous meteorological data. The vapor gradient method were found to be disappointed on estimating daily ET in this study
The results of the short-time diurnal analyses are presented as below. Under wet soil conditions, the amounts of ETs estimated by the Penman-Monteith equation were most close to the measured loss of soil water. The Priestley-Taylor equation only includes the available energy and is unable to capture the influences of other meteorological variances on ET. The ETs estimated by the Bowen ratio method is oscillated due to the intrinsic unstable approach, so it is unsuitable for estimates ET using high temporal resolution data.
參考文獻
1.Andrade, J. A. and F. G. Abreu, 2002, Modelling daily and annual cycles of temperature in two types of soil, WCSS, 17, 14-21.
2.Bowen, I. S., 1926, The ratio of heat losses by conduction and by evaporation from any water surface, Physical Review, Vol. 27, 779-787.
3.Brutsaert, W., 1982, Evaporation into the Atmosphere: Theory, History, and Applications, Kluwer Academic Publishers, Netherlands, 229 pp.
4.Brutsaert, W., and M. B. Parlange, 1998, Hydrologic cycle explains the evaporation paradox, Nature, 396, 30.
5.Campbell, G. S. and J. M. Norman, 1998, An Introduction to Environmental Biophysics, second Edition (New York: Springer-Verlag).
6.Choudhury, B. J., and J. L. Monteith, 1988, A four-layer model for the heat budget of homogeneous land surfaces, Quarterly Journal of the Royal Meteorological Society, Vol. 114, 373-398.
7.Dingman, S. L., 2002, Physical Hydrology, 2nd Ed., Prentice Hall, New Jersey, USA, 646 pp.
8.Fares, A., and A. K. Alva, 1999, Estimation of citrus evapotranspiration by soil water mass balance, Soil Science, Vol. 164, No. 5, 302-310.
9.Fares, A., and A. K. Alva, 2000, Soil water components based on capacitance probes in a sandy soil, Soil Science Society of America Journal, Vol. 64, 311-318.
10.Fritschen, L. J., 1963, Construction and evaluation of a miniature net radiometer, Journal of applied meteorology, Vol. 2, 165-172.
11.Gavin, H., and C. T. Agnew, 2000, Estimating evaporation and surface resistance from a wet grassland, Physics and Chemistry of the Earth, 25(7-8), 599-603.
12.Hobbins, M. T., J. A. Ramírez, and T. C. Brown, 2004, Trends in pan evaporation and actual evapotranspiration across the conterminous?, Geophysical Research Letters, Vol. 31, L13503.
13.Idso, S. B., J. K. Aase, and R. D. Jackson, 1975, Net radiation-soil heat flux relation as influenced by soil water content variations, Boundary Layer Meteorology, 9, 113-122.
14.Kustas, W. P., C. S. T. Daughtry, and P. J. van Oevelen, 1993, Analytical treatment of the relationships between soil heat flux/net radiation ration and vegetation indices, Remote Sens. Environ, 46, 319-330.
15.Lawrimore, J. H., and T. C. Peterson, 2000, Pan evaporation trends in dry humid regions of the United States, Journal of Hydrometeorology, Vol. 1, No. 6, 543-546.
16.Liu, C., X. Zhang, and Y. Zhang, 2002, Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter, Agricultural and Forest Meteorology, 111, 109-120.
17.Liu, B., M. Xu, M. Henderson, and W. Gong, 2004, A Spatial analysis of pan evaporation trends in China, 1955-2000, Journal of Geophysical Research, Vol. 109, D15102.
18.Malek, E., and G. E. Bingham, 1993, Comparison of the Bowen rationenergy balance and the water balance methods for the measurement of evapotranspiration, Journal of Hydrology, 146, 209-220.
19.Monteith, J. L., 1981, Evaporation and surface temperature, Quarterly Journal of the Royal Meteorological Society, Vol. 107, No. 451, 1-27.
20.Qiu, G. Y., T. Yano, and K. Momii, 1998, An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface, Journal of Hydrology, 210, 93-105.
21.Paltineanu, I. C., and J. L. Starr, 1997, Real-time soil water dynamics using multisensor capacitance probes: laboratory calibration, Soil Science Society of America Journal, Vol. 61,1576-1585.
22.Penman, H. L., 1948, Natural Evaporation from open water, bare soil and grass, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 193, No. 1032, 120-145.
23.Priestley, C. H., and R. J. Taylor, 1972, On the assessment of surface heat flux and evaporation using large-scale parameters, Monthly Weather Review, Vol. 100, No. 2, 81-92.
24.Robinson, D. A., C. M. K. Gardner, J. D. Cooper, 1999, Measurement of relative permittivity in sandy soils using TDR, capacitance and theta probes: comparison, including the effects of bulk soil electrical conductivity, Journal of Hydrology, 223, 198-211.
25.Rodriguez-Iturbe, I., P. D’Odorico, A. Porporato, L. Ridolfi, 1999, On the spatial and temporal links between vegetation, climate, and soil moisture, Water Resources Research, Vol. 35, No. 12,3709-3722.
26.Santanello, J. A., and M. A. Friedl, 2003, Diurnal covariation in soil heat flux and net radiation, Journal of Applied Meteorology, Vol.42, 851-862.
27.Starr, J. L., and I. C. Paltineanu, 1998, Soil water dynamics using multisensor capacitance probes in nontraffic interrows of corn, Soil Science Society of America Journal, Vol. 62, 144-122.
28.Thornthwaite, C. W., 1984, An approach toward a rational classification of climate, Geographical Review, Vol. 38, No. 1,55-94.
29.Van Bavel, C. H. M., 1966, Potential evaporation: the combination concept and its experimental verification, Water Resources Research, Vol. 2, No. 3, 455-467.
30.Vörösmarty, C. J., C. A. Federer, and A. L. Schloss, 1998, Potential evaporation functions compared on US watersheds: Possible implications for global-scale water valance and terrestrial ecosystem modeling, Journal of Hydrology, 207, 147-169.
31.Wang, J., and R. L. Bras, 1998, A new method for estimation of sensible heat flux from air temperature, Water Resources Research, Vol. 34, No. 9, 2281-2288.
32.Wang, J., and R. L. Bras, 1999, Ground heat flux estimated from surface soil temperature, Journal of Hydrology, 216, 214-226.
33.Wang, J., G. D. Salvucci, and R. L. Bras, 2004, An extremum principle of evaporation, Water Resources Research, Vol. 40.
34.Wright, I. R., J. H. C. Gash, H. R. Da Rocha, W. J. Shuttleworth, C. A. Nobre, G. T. Maitelli, C. A. G. P. Zamparoni, and P. R. A. Carvalho, 1992, Dry season micrometeorology of central Amazonian ranchland, Quarterly Journal of the Royal Meteorological Society, vol. 118, No. 508, 1083-1099.
35.Yu, P. S., T. C. Yang, and C. K. Wu, 2002, Impact of climate on water resources in southern Taiwan, Journal of Hydrology, 260, 161-175.
36.Zhang, L., K. Hickel, W. R. Dawes, F. H. S. Chiew, A. W. Western, and P. R. Briggs, 2004, A rational function approach for estimating mean annual evapotranspiration, Water Resources Research, Vol. 40.
37.經濟部水資源局,2000,台灣地區合理之蒸發散折算係數與區域蒸發散量估算方法之建立(1/2)。
38.經濟部水資源局,2001,台灣地區合理之蒸發散折算係數與區域蒸發散量估算方法之建立(2/2)。
39.王如意、易任,八十八年版,應用水文學(上冊),國立編譯館,525頁。
40.田維婷,2003,氣候變遷對台灣地區地表水文量之影響,國立中央大學碩士論文。
41.徐碧治、林廣台 譯,R. K. Linsley, M. A. Kohler, and J. L. H. Paulhus 著,2000,水文學,第三版,582頁。
42.李新偉、陳啟榮,2005,香港的蒸發量分析及長期趨勢,第十九屆粵港澳氣象科技研討會。
43.施鈞程,2003,台灣森林集水區之蒸發散量推估,國立中興大學碩士論文。
44.陳鈞華,2002,水田蒸發散量對區域涼化作用功能效益評估之研究,國立台灣大學博士論文。
45.陳姜琦,2002,應用衛星遙測於區域蒸發散之估算,國立成功大學碩士論文。
46.陳奕穎,2004,發展遙測資料反演可感熱與潛熱通量之研究,國立中央大學碩士論文。
47.鍾譯靚,2001,利用衛星遙測估算蒸發散量與熱通量之研究,國立台灣大學碩士論文。
48.簡文煥,2003,應用大地衛星於區域地表溫度和緩效能之研究,中華大學碩士論文。
49.經濟部水利署網站http://www.wra.gov.tw