| 研究生: |
楊介振 Jie-Zhen Yang |
|---|---|
| 論文名稱: |
幾何效應對於量子點奈米線的熱電特性影響 |
| 指導教授: |
郭明庭
Ming-Ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 量子點 、熱電特性 、幾何效應 |
| 外文關鍵詞: | Quantum dot, power factor, nanowire |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討幾何效應對於量子點奈米線系統的影響,我們透過調整電子躍遷強度達到控制量子點奈米線使之呈現一維、二維及三維的特性。在室溫下,最大功率因數傾向於電極的化學勢遠離量子點能階。同時,我們發現當電子傳輸以熱電子輔助隧穿過程為主時,席貝克係數(S)幾乎與電導無關。這樣能使我們的功率因數(PF)得到提升。但其聲子熱導也會隨著量子點截面積增加而提昇,最後發現在直徑為20nm、長度為125nm的三維量子點奈米線中,ZT值可以大於3。
We theoretically studied the topological effects on the thermoelectric properties of quantum dot array (QDA) quantum wires. The topological transition of QDAs from three dimension to one dimension can be modulated by different direction electron hopping strengths. At room temperature, the maximum power factor prefers the chemical potential of the electrodes away from the QD energy level. Meanwhile, we found that Seebeck coefficient is almost independent on electrical conductance when electron transport is dominated by thermionic assisted tunneling process. Finally, we obtained the thermoelectric figure of merit can reach three for a silicon quantum wire with a dimeter 20 nm and a length 125 nm.
[1] E. Velmre, Electronics Conference (BEC) 12th Biennial Baltic,Tallinn (2010).
[2] Y. G. Gurevich and G. N. Logvinov, Semicond. Sci. Technol. 20, R57 (2005).
[3] A. F. Ioffe,Infosearch Limited London(1957).
[4] A. Majumdar, Science 303, 777 (2004).
[5] L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).
[6] L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
[7] L. D. Hicks, T. C. Harman, X. Sun and M. S. Dresselhaus, Phys. Rev. B 53, R10493(1996).
[8] R.Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn, Nature 413,597 (2001).
[9] N.V. Nong,E. Yusufu, T. Sugahara and N. Kagami ,Advanced Materials Technologies 4,1800556(2019).
[10] D.Bimberg and U.W. Pohl, Materials Today 14(9),388-397(2011).
[11] D.M.T. Kuo and Y.C. Chang, Phys. Rev. B 81, 205321(2010).
[12] H.Haug and A.P.Jauho, Springer, Heidelberg(1996).
[13] Y. F. Zhou, H. Jiang, X. C. Xie and Q. F. Sun, Phys. Rev. B 95,245137(2017).
[14] N. X. Yang, Y. F. Zhou, P. Lv and Q. F. Sun, Phys. Rev. B 97 ,235435(2018).
[15] D. M. T. Kuo, AIP Advances 10,045222 (2020).
[16] D.M.T. Kuo, C.C.Chen, Y.C. Chang, Phys. Rev. B 95,075432 (2017).
[17] G.L.Chen, D.M.T Kuo, W. T. Lai and P. W. Li, Nanotechnology,18, 475402(2007).
[18] C. R. Kagan and C. B. Murry, Nature Nanotechnology 10,1013(2015).
[19] R. K. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D. Yang, and A. Majumdar, Phys. Rev. Lett. 101,105501(2008).
[20] M. Hu and D. Poulikakos, Nano Lett. 12,5487 (2012).
[21] C.Chang, M.Wu, D.He, Y.Pei, C.F.Wu, X.Wu, H.Yu , F.Zhu ,K.Wang , Y.Chen , L,Huang , J.F.Li, J.He and L.D.Zhao, Science 360,778 (2018).
[22] C.Zhou. et al., Nat. Mater. 20,1378 (2021).