| 研究生: |
林昶嶸 Chang-Rong Lin |
|---|---|
| 論文名稱: |
藍光發光二極體激發YAG螢光粉之光譜模型研究 Study of Emission Spectrum Model for YAG Phosphor Excited by Blue LED |
| 指導教授: |
楊宗勳
Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 藍光LED激發YAG螢光粉 、再吸收 、再輻射 、螢光粉發光光譜模型 |
| 外文關鍵詞: | blue LED excite YAG phosphor, re-absorption, re-emission, spectrum model of phosphor |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於白光發光二極體逐漸普遍,而藍光發光二極體搭配釔鋁石榴石螢光體(Yttrium Aluminum Garnet, YAG),則是製作白光發光二極體最簡易的方式,因此深入探討其發光機制,即為此領域的研究重點。
本論文主要在建立螢光粉發光光譜模型,描述藍光發光二極體與螢光體之間的微觀物理機制,其中再吸收與再輻射也將一併考慮,並配合演算法進行模擬計算,得到適當之參數,吸收係數與轉換效率。
再以此物理模型模擬藍光發光二極體入射螢光體後,在螢光體內部每一層的激發、吸收與轉換現象。由模型得到的光譜可以預測不同厚度的螢光粉發光光譜,在激發波段,其模擬光譜與實驗光譜貼近;而輻射波段,光譜分布雖然無法完全符合,但其趨勢一致。
To investigate the luminescence mechanism of white LED which is produced by using blue LED exciting yttrium aluminum garnet (YAG) phosphor is the point in this field all the time, because of its popular applications and the simplest way to fabricate.
In this thesis, according to not only the physical mechanism which includes excitation, emission, absorption, and conversion between the blue LED and phosphor, but also the re-absorption and re-emission of phosphor, the emission spectrum model is established. Besides, the absorption coefficient and conversion coefficient of phosphor are carried out by algorithm.
Therefore, the phenomena of excitation, emission, absorption, and conversion inside each layer of phosphor would be described by this spectrum model. In addition, the luminescence spectrum of phosphor with different thickness could be predicted by this spectrum model. The simulated spectrum is close to experiment spectrum over the excitation wavelength range, and the tendency is the same, even though the magnitudes are different over the emission wavelength range.
[1] M. S. Shur, A. Žukauskas, and R. Gaska, Introduction to Solid-State Lighting, (Wiley-Interscience, New York, 2002).
[2] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emittersand Lasers (Springer, New York, 1997).
[3] Y Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, "Light Emitting DeviceHaving a Nitride Compound Semiconductor and a Phosphor Containing a Garnet Fluorescent Material," United States Patent, US 5998925 (1999).
[4] 劉如熹, 林益山, “人類未來照明的夢想,” 科學發展月刊 309, 57-59 (2005).
[5] 劉如熹, 劉宇桓, “發光二極體之SrSi2N2O2:Yb 化合物螢光粉之介紹,” 科儀新知 2, 26-32 (2006).
[6] CIE, “Method of Measuring and Specifying Color Rendering Properties of Light Sources,” CIE 13.2 (1974).
[7] L. Deng and N. Narendran, “Color Rendering Properties of LED Light Sources,” Solid State Lighting II : Proceedings of SPIE 4776, 61-67 (2002).
[8] J. C. Bhat, D. A. Steigerwald, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Matin, and S. L. Rudaz, “Illumination with Solid State Lighting
Technology,” IEEE Journal of Qunatum Electronics 8, 310-320 (2002).
[9] R. Mueller-Mach and G. O. Mueller, “White Light Emitting Diodes for Illumination,” Proceedings of SPIE 3938, 30-41 (2000).
[10] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, Green, and Blue LEDs for White Light Illumination,” IEEE Journal of Qunatum Electronics 8, 333-338
(2002).
[11] R. Schmide, T. Schlotter, and J. Schneider, “Luminescence Conversion of Blue Light Emitting Diodes,” Applied Physics A: Mater 64, 417 (1997).
[12] H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, S. S. Kim, “Enchancement of Red Spectral Emission Intensity of Y3Al5O12:Ce3+ Phosphor via Pr Co-Doping and
Tb Substitution for the Application to White LEDs,” Journal of Luminescence 126, 371-377 (2007).
[13] Y. Q. Li, J. E. J. Van Steen J. W. H. Van Krevel, G. Botty, A. C. A. Delsing , F. J. DiSalvo, G. De With, and H. T. Hintzen, “Luminescence Properties of Red-Emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba) LED Conversion Phosphors,”
Journal of Alloys and Compounds 417, 273-279 (2006).
[14] H. S. Jang and D. Y. Jeon, “Yellow-Emitting Sr3SiO5:Ce3+, Li Phosphor for White-Light-Emitting Diodes and Yellow-Light-Emitting Diodes,” Applied Physics Letters 90, 041906 (2007).
[15] K. Sakuma, N. Hirosaki, R. J. Xie, “Red-Shift of Emission Wavelength Caused by Reabsorption Mechanism of Europium Activated Ca-?-SiAlON Ceramic Phosphors,” Journal of Luminescence 126, 843-852 (2007).
[16] Á. Borbély and S. G. Johnson, “Performance of Phosphor-Coated Light-Emitting Diode Optics in Ray-Trace Simulations,” Optical Engineering 44, 111308 (2005).
[17] S. J. Lee, “Analysis of Light-Emitting Diodes by Monte Carlo Photon Simulation,” Applied Optics 40, 1427-1437 (2001).
[18] D. Toublanc, “Henyey-greenstein and Mie Phase Functions in Monte Carlo Radiative Transfer Computations,” Applied Optics 35, 3270-3274 (1996).
[19] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee and T. H. Yang, “Precise Optical Modeling for Silicate-Based White LED,” Optics Express 16, 20060-20066 (2008).
[20] D. Y. Kang, E. Wu, and D. M. Wang, “Modeling White Light-Emitting Diodes with Phosphor Layers,” Applied Physics Letters 89, 231102 (2006).
[21] E. Radkov, R. Bompiedi, A. M. Srivastava, A. A. Setlur, C. A. Becker, “White Light with UV LEDs,” Proceedings of SPIE 5187, 171-177 (2003).
[22] G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
[23] M. Parameswaran, A. M. Robinson, D. L. Blackburn, M. Gaitan, and J. Geist, “Micromachined Thermal Radiation Emitter from a Commercial CMOS Process,” IEEE Journal of Electron Device Letters 12, 57-59 (1991).
[24] K. Hansen and E. E. B. Campbell, “Thermal Radiation form Small Particles,” Physical Review E 58, 5477-5482 (1998).
[25] D. Jones, “Source of Terrestrial Non-Thermal Radiation,” Nature 260, 686-689 (1976).
[26] S. Shionoya, H. Yamamoto, and W. M. Yen, Phosphor Handbook (CRC Press, New York, 1998).
[27] A. D. McNaught and A. Wilkinson, IUPAC Compendium of Chemical Terminology (Blackwell Science, 1997).
[28] J. Wilson and J.F.B. Hawkes, Optoelectronics: An Introduction (Prentice Hall, 1989).
[29] R. C. Millikan and D. R. White, “Systematics of Vibrational Relaxation,” Journal of Chemical Physics 39, 3209-3213 (2004).
[30] J. Bernard, “Photon Bunching in the Fluorescence from Single Molecules: A Probe for Intersystem Crossing,” Journal of Chemical Physics 98, 850-859 (1993).
[31] S. M. Dancoff and P. Morrison, “The Calculation of Internal Conversion Coefficients,” Physical Review 55, 122-130 (1939).
[32] K. Sakano, Y. Shimizu, Y. Noguchi, and T. Moriguchi, “Light Emitting Device Having A Nitride Compound Semiconductor and A Phosphor Containing A Garnet Fluorescent Material,” United States Patent, US.5998925 (1999).
[33] M. Srivastava and W. W. Beers, “Green-Light Emitting Phosphors and Light Sources Using the Same,” United States Patent, US. 6278135 (2001).
[34] W. W. Beers T. F. Soules, A. M. Srivastava, and L. M. Levinson, and A. R. Duggal, “Light Emitting Device with Phosphor Composition,” United States Patent, US. 6580097 (2003).
[35] W. M. Jadwisienczak H. J. Lozykowski, and I. Brown, “Visible Cathodoluminescence of GaN Doped with Dy, Er, and Tm,” Applied Physics Letters 74, 1129-1131 (1999).
[36] H. Chander,V. Shanker,D. Haranath,S. Dudeja and P. Sharam, “Characterization of ZnS:Cu, Br Electroluminescent Phosphor Prepared by New Route,” Materials Research Bulletin 38, 279-228 (2003).
[37] W. L. Warren, K. Vanheusden, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms Behind Green Photoluminescence in ZnO Phosphor
Powders,” Journal of Applied Physics 79, 7983-7990 (1996).
[38] L. Arizmendi, E. Dieguez, and J. M. Cabrera, “X-Ray Induced Luminescence, Photoluminescence and Thermo Luminescence of Bi4Ge3O12,” Journal of Physics C: Solid State Physics 18, 4777-4783 (1985).
[39] Z. Liu, S. Liu, K. Wang, and X. Luo, “Effects of Phosphor’s Location on LED Packing Performance,” International Conference on Electronic Packaging Technology and High Density Packaging, IEEE (2008).
[40] 何信穎, “白光LED 之YAG 螢光粉光學模型之研究”, 碩士論文, 國立中央大學光電研究所 (2008).
[41] "Oregon Medical Laser Center,"http://omlc.ogi.edu/.
[42] E. Hecht, OPTICS (Addision-Wesley, New York, 2002).
[43] C. D. Gelatt and S. Kirkpatrick, “Optimization by Simulated Annealing,” Science 220, 671-680 (1983).
[44] Y. Pan, M. Wu, Q. Su, “Tailored Photoluminescence of YAG:Ce Phosphor Through Various Methods,” Journal of Physics and Chemistry of Solids 65, 845-850 (2004).
[45] P. Siarry, G. Berthiau, F. Durdin, and J. Haussy, “Enhanced Simulated Annealing for Globally Minimizing Functions of Many-Continuous Variables,” ACM Transactions on Mathematical Software 23, 209-228 (1997).
[46] "Holistic Numerical Methods Institute," http://numericalmethods.eng.usf.edu.
[47] A. Perez-Foguet, A. Rodriguez-Ferran, and A. Huerta, “Numerical Differentiation for Local and Global Tangent Operators in Computational Plasticity,” Computer Methods in Applied Mechanics and Engineering 189, 277-296 (2000).
[48] C. F. Boren and D. R. Huffmarn, Absorption and Scattering of Light by Small Paricles (Wiley, New York, 1983).
[49] H. C. Hulst and H. C. Van Der Hulst, Light Scattering by Small Particles (Dover Publication Inc., 1981).