跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉衍廷
Yan-Ting Liu
論文名稱: 以機器學習與深度學習演算法實現有缺陷天線陣列之角度估計
Direction of Arrival Estimation for Imperfect Antenna Array with Machine Learning and Deep Learning Algorithms
指導教授: 張大中
DahChung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 角度估計自動編碼器自動編碼器摺積自動編碼器支撐向量機
外文關鍵詞: Array imperfection, direction of arrival (DOA), AutoEncode (AE), Convolutional AutoEncode (CAE), support vector machine (SVM)
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出以數據驅動的方式用於適應均勻線性陣列天線(Uniform Linear Array, ULA) 中存在的各種陣列缺陷(Array imperfection) 並估計訊號到達的方向(Direction of Arrival, DOA) 獲得良好的陣列缺陷適應性與增強通用性。在深度學習演算法提出摺積自動編碼器的架構比一般的深度自動編碼器強調了學習局部的結構特徵,自動編碼器的概念類似空間濾波器,將入射訊號的空間範圍分解成多個較小的子空間範圍,在此架構下比起原始的入射訊號每個子空間涵蓋的入射範圍更窄使得入射訊號的的分佈更加集中,有助於減輕後續DOA 估計的負擔。在機器學習演算法中支撐向量機(Support Vector Machine, SVM) 利用核函數將數據映射至高維度的空間進行分類,在對DOA 估計進行分類時,我們使
    用有向無環圖(Directed Acyclic Graph, DAG) 改善一般Multiclass SVM 處生的不可辨識區域的問題。在結果分析與比較中,可以看出以數據驅動的方法在各種陣列缺陷下均有令人滿意的性能。


    This thesis studies a datadriven approach adapted to various imperfections in uniform linear array (ULA), which can estimate the direction of arrival (DOA) to obtain a good adaptability and enhance versatility for imperfect arrays. The architecture of the convolutional autoencoder in deep learning substantially focuses on the learning of local features of the structure than that of the general deep autoencoder. The autoencoder acts like a group of spatial filters, decomposing the input into multiple small spatial sub-regions. The range of the input covered by each spatial sub-region is narrower than that of the original input, and hence, the distribution of the input is better centralized. In machine learning algorithms, support vector machines (SVM) use kernel functions to map data in a high-dimensional space for classification. For the application of DOA estimation, we apply Directed Acyclic Graph (DAG) to solve the problem of unidentifiable regions with the general multi-class SVM. From simulation analysis and comparison, it can be seen that the data-driven method has satisfactory performance for different cases of imperfect arrays.

    中文摘要 i 英文摘要 iii 目錄 i 圖目錄 iii 表目錄 iv 第 1 章序論 1 1.1 前言 1 1.2 章節架構 5 第 2 章方位估測模擬資料架構 6 2.1 均勻線性陣列基本架構 6 2.2 非理想型陣列天線 10 第 3 章角度估計深度學習演算法 15 3.1 角度估計深度學習演算法系統與架構說明 15 3.2 深度自動編碼器 17 3.2.1 深度自動編碼器資料前處理 18 3.2.2 深度自動編碼器編碼與解碼過程 19 3.2.3 深度自動編碼器平行多層分類器 21 3.3 摺積自動編碼器 23 3.3.1 摺積自動編碼器資料前處理 24 3.3.2 摺積自動編碼器編碼過程與解碼過程 25 3.3.3 摺積自動編碼器平行多層分類器 27 第 4 章角度估計機器學習演算法 30 4.1 角度估計機器學習演算法系統與架構說明 30 4.2 支撐向量機 (SVM) 31 4.3 有向無環圖支援向量機 (DAG­SVM) 35 第 5 章系統模擬與結果分析 39 5.1 模擬環境說明與測試 39 5.1.1 case1 摺積自動編碼器在所有入射角度下的輸入與輸出 模擬圖 42 5.1.2 case2 深度學習與機器學習演算法的性能比較 44 5.2 摺積自動編碼器各項系統參數與欲估計角度準確率的性能 比較 46 5.2.1 case1 在不同多任務自動編碼器層數與準確率的性能比 較 47 5.2.2 case2 在不同摺積核大小與準確率的性能比較 48 5.2.3 case3 在不同摺積核數量與準確率的性能比較 49 5.2.4 case4 在不同平行多層分類器層數與準確率的性能比較 50 5.3 在一般陣列的角度準確率與欲估計角度的性能分析 52 5.3.1 case1 深度自動編碼器對不同預處理方式與準確率的性 能比較 53 5.3.2 case2 摺積自動編碼器對不同平行多層分類器與準確率 的性能比較 54 5.3.3 case3 不同深度學習演算法與準確率的性能比較 55 5.3.4 case4 深度自動編碼器與摺積自動編碼器在兩個目標訊 號源的準確率的性能比較 56 5.4 在陣列缺陷下的準確率與欲估計角度的性能分析 58 第 6 章結論 63 參考文獻 65

    [1] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
    IEEE Transactions on Antennas and Propagation, vol. 34,
    no. 3, pp. 276–280, 1986.
    [2] N. Yuen and B. Friedlander, “Asymptotic performance analysis
    of esprit, higher order esprit, and virtual esprit algorithms,” IEEE
    Transactions on Signal Processing, vol. 44, no. 10, pp. 2537–2550,
    1996.
    [3] B. Friedlander and A. J. Weiss, “Direction finding in the presence
    of mutual coupling,” IEEE Transactions on Antennas and Propagation,
    vol. 39, no. 3, pp. 273–284, 1991.
    [4] M. Viberg and A. L. Swindlehurst, “Analysis of the combined effects
    of finite samples and model errors on array processing performance,”
    IEEE Transactions on Signal Processing, vol. 42, no. 11,
    pp. 3073–3083, 1994.
    [5] W. Xie, C. Wang, F. Wen, J. Liu, and Q. Wan, “Doa and gainphase
    errors estimation for noncircular sources with central symmetric array,”
    IEEE Sensors Journal, vol. 17, no. 10, pp. 3068–3078, 2017.
    [6] B. Porat and B. Friedlander, “Accuracy requirements in offline
    array
    calibration,” IEEE Transactions on Aerospace and Electronic
    Systems, vol. 33, no. 2, pp. 545–556, 1997.
    [7] M. Pastorino and A. Randazzo, “A smart antenna system for direction
    of arrival estimation based on a support vector regression,”
    IEEE Transactions on Antennas and Propagation, vol. 53, no. 7, pp.
    2161–2168, 2005.
    [8] Z. Liu, C. Zhang, and P. S. Yu, “Directionofarrival
    estimation
    based on deep neural networks with robustness to array imperfections,”
    IEEE Transactions on Antennas and Propagation, vol. 66,
    no. 12, pp. 7315–7327, 2018.
    [9] A. Randazzo, M. A. AbouKhousa,
    M. Pastorino, and R. Zoughi,
    “Direction of arrival estimation based on support vector regression:
    Experimental validation and comparison with music,” IEEE Antennas
    and Wireless Propagation Letters, vol. 6, pp. 379–382, 2007.
    [10] X. Xiao, S. Zhao, X. Zhong, D. L. Jones, E. S. Chng, and H. Li, “A
    learningbased
    approach to direction of arrival estimation in noisy
    and reverberant environments,” in 2015 IEEE International Conference
    on Acoustics, Speech and Signal Processing (ICASSP), 2015,
    pp. 2814–2818.
    [11] F. Vesperini, P. Vecchiotti, E. Principi, S. Squartini, and F. Piazza,
    “A neural network based algorithm for speaker localization in a
    multiroom
    environment,” in 2016 IEEE 26th International Workshop
    on Machine Learning for Signal Processing (MLSP), 2016, pp.
    1–6.
    [12] S. Chakrabarty and E. A. P. Habets, “Multispeaker
    doa estimation
    using deep convolutional networks trained with noise signals,”
    IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 1,
    pp. 8–21, 2019.
    [13] J. Wang, X. Zhang, Q. Gao, H. Yue, and H. Wang, “Devicefree
    wireless localization and activity recognition: A deep learning approach,”
    IEEE Transactions on Vehicular Technology, vol. 66, no. 7,
    pp. 6258–6267, 2017.
    [14] L. Zhao, H. Huang, X. Li, S. Ding, H. Zhao, and Z. Han, “An accurate
    and robust approach of devicefree
    localization with convolutional
    autoencoder,” IEEE Internet of Things Journal, vol. 6, no. 3,
    pp. 5825–5840, 2019.
    [15] D. Isa, L. H. Lee, V. P. Kallimani, and R. RajKumar, “Text document
    preprocessing with the bayes formula for classification using
    the support vector machine,” IEEE Transactions on Knowledge and
    Data Engineering, vol. 20, no. 9, pp. 1264–1272, 2008.
    [16] J. Yousafzai, P. Sollich, Z. Cvetkovic, and B. Yu, “Combined features
    and kernel design for noise robust phoneme classification using
    support vector machines,” IEEE Transactions on Audio, Speech,
    and Language Processing, vol. 19, no. 5, pp. 1396–1407, 2011.
    [17] M. Pontil and A. Verri, “Support vector machines for 3d object
    recognition,” IEEE Transactions on Pattern Analysis and Machine
    Intelligence, vol. 20, no. 6, pp. 637–646, 1998.
    [18] F. Ben Abid, S. Zgarni, and A. Braham, “Distinct bearing faults
    detection in induction motor by a hybrid optimized swpt and ainetdag
    svm,” IEEE Transactions on Energy Conversion, vol. 33, no. 4,
    pp. 1692–1699, 2018.
    [19] Z. Sun, Z. Guo, C. Liu, X. Wang, J. Liu, and S. Liu, “Fast extended
    oneversusrest
    multilabel
    support vector machine using approximate
    extreme points,” IEEE Access, vol. 5, pp. 8526–8535, 2017.
    [20] P. Jungwirth and J. V. Monaco, “Digital signal processing: From
    complex numbers to the hilbert transform,” in 2019 SoutheastCon,
    2019, pp. 1–6.
    [21] A. M. Elbir, “A novel data transformation approach for doa estimation
    with 3d
    antenna arrays in the presence of mutual coupling,”
    IEEE Antennas and Wireless Propagation Letters, vol. 16,
    pp. 2118–2121, 2017.
    [22] W. Wang, R. Wu, J. Liang, and H. C. So, “Phase retrieval approach
    for doa estimation with array errors,” IEEE Transactions on
    Aerospace and Electronic Systems, vol. 53, no. 5, pp. 2610–2620,
    2017.
    [23] P. Forster, “Generalized rectification of cross spectral matrices for
    arrays of arbitrary geometry,” IEEE Transactions on Signal Processing,
    vol. 49, no. 5, pp. 972–978, 2001.
    [24] M. Dehghanpour, V. T. Vakili, and A. Farrokhi, “Doa estimation
    using multiple kernel learning svm considering mutual coupling,”in 2012 Fourth International Conference on Intelligent Networking
    and Collaborative Systems, 2012, pp. 55–61.
    [25] N. Cristianini and E. Ricci, Support Vector Machines. Boston,
    MA: Springer US, 2008, pp. 928–932. [Online]. Available:
    https://doi.org/10.1007/9780387301624_
    415
    [26] M. Ha Quang, P. Niyogi, and Y. Yao, “Mercer’s theorem, feature
    maps, and smoothing.” 01 2006, pp. 154–168.
    [27] D. Singh and C. K. Mohan, “Distributed quadratic programming
    solver for kernel svm using genetic algorithm,” in 2016 IEEE
    Congress on Evolutionary Computation (CEC), 2016, pp. 152–159.

    QR CODE
    :::