跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳宗榆
Zong-Yu Chen
論文名稱: 以熱壓及光固化奈米壓印技術製作公分 等級奈微米光學元件
Fabrication of nanooptical elements with centimeter-scaled device area based on hot-embossing and UV-curing nano-imprinting technology
指導教授: 王智明
Chih-Ming Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 72
中文關鍵詞: 奈米壓印技術奈微米光學元件
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文使用奈米壓印技術製作公分等級的奈微米元件,旨在取代電子束微影及傳統曝光機的方式,以達到製作公分等級元件及大量生產的目的。奈米壓印技術相較於傳統方法,具備低成本、效率高及製作快速的優勢。實驗中,我們成功使用了熱壓成型奈米壓印和光固化奈米壓印兩種技術,製作出公分等級的光柵元件。這些光柵元件主要應用於光導中的擴瞳功能。此外,我們利用嚴格耦合波分析法(Rigorous coupled-wave analysis,RCWA)對光柵的繞射效率進行模擬,並將模擬結果與實際測量結果進行比較。結果顯示,模擬結果與量測結果的誤差小於5%,證明了我們製作的光柵元件在光學性能上的高一致性和可靠性。這一研究成果展示了奈米壓印技術在製作高精度、大面積光學元件方面的巨大潛力,並為未來的光學元件製造提供了一條高效、可行的技術路徑。本研究的成功不僅為光導元件的製造提供了新的解決方案,也為擴展奈米壓印技術在其他光學和電子元件中的應用奠定了基礎。未來,我們將進一步優化壓印工藝,提升元件性能,以滿足更多應用需求。


    This thesis employs nanoimprint lithography (NIL) to fabricate centimeter-scale nanometer components, aiming to replace electron beam lithography and traditional exposure machines for producing centimeter-scale devices and achieving mass production. Compared to traditional methods, nanoimprint lithography offers advantages such as low cost, high efficiency, and rapid fabrication. In our experiments, we successfully used both thermal nanoimprint and UV-curable nanoimprint techniques to create centimeter-scale grating elements. These grating elements are mainly used for pupil expansion functions in light guides. Additionally, we employed rigorous coupled-wave analysis (RCWA) to simulate the diffraction efficiency of the gratings and compared the simulation results with actual measurements. The results showed that the error between the simulation and measurement was less than 5%, demonstrating the high consistency and reliability of the optical performance of our fabricated grating elements. This research highlights the significant potential of nanoimprint lithography in producing high-precision, large-area optical components and provides an efficient and feasible technical pathway for future optical component manufacturing. The success of this study not only offers a new solution for the production of light guide components but also lays the foundation for extending nanoimprint lithography applications to other optical and electronic components. In the future, we will further optimize the imprinting process to enhance component performance to meet more application needs.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 奈米壓印技術 2 1-2-2 光導元件 8 1-3 研究動機 9 第2章 基本理論 10 2-1 繞射光學元件 10 2-2 繞射光導 11 2-2-1 擴瞳技術 13 2-3 k-space圖 15 第3章 製程架構 23 3-1 矽模具製作 23 3-2 奈米壓印機 25 3-2-1 熱壓成型奈米壓印 25 3-2-2 光固化奈米壓印 28 3-3 未來材料的選用 29 3-3-1 橢圓儀分析 31 3-4 壓印流程 33 3-5 製程結果 34 第4章 量測架構與數據分析 38 4-1 光柵與光導效率量測及分析 38 4-1-1 光柵繞射效率量測及分析 38 4-1-2 In-coupler VHOE穿透率及耦合效率量測 41 4-1-3 光導總效率 45 4-2 AR影像拍攝 45 4-3 均勻度量測 49 4-4 稜鏡耦合效率量測 51 4-5 金屬光柵的穿透率量測 53 第5章 結論與未來展望 56 5-1 結論 56 5-2 未來展望 56 參考文獻 57

    [1] D. Ungureanu et al., "Hololens 2 research mode as a tool for computer vision research," 2020.
    [2] J. D. Waldern, A. J. Grant, and M. M. Popovich, "DigiLens switchable Bragg grating waveguide optics for augmented reality applications," in Digital Optics for Immersive Displays, 2018, vol. 10676, pp. 108-123: SPIE.
    [3] Report:《微影製程再進化!複雜電路的祕密》科技大觀園 in 2020
    (https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=ba7d1350-814b-409a-8fde-3e1b20d9cd6d)
    [4] S. Y. Chou, P. R. Krauss, and P. J. J. A. p. l. Renstrom, "Imprint of sub‐25 nm vias and trenches in polymers," vol. 67, no. 21, pp. 3114-3116, 1995.
    [5] M. Colburn et al., "Step and flash imprint lithography: a new approach to high-resolution patterning," in Emerging Lithographic Technologies III, 1999, vol. 3676, pp. 379-389: SPIE.
    [6] N. Unno and T. J. N. Mäkelä, "Thermal nanoimprint lithography—A review of the process, mold fabrication, and material," vol. 13, no. 14, p. 2031, 2023.
    [7] Y. Xia and G. M. Whitesides, "Soft lithography," Annual review of materials science, vol. 28, no. 1, pp. 153-184, 1998.
    [8] S. Y. Chou, C. Keimel, and J. J. N. Gu, "Ultrafast and direct imprint of nanostructures in silicon," vol. 417, no. 6891, pp. 835-837, 2002.
    [9] D. Cheng et al., "Design and manufacture AR head-mounted displays: A review and outlook," vol. 2, no. 3, pp. 350-369, 2021.
    [10] LightTrans k-Domain Layout Visualization (“The Magic Circle”)
    [11] Zemax: How to simulate exit pupil expander (EPE) with diffractive optics for augmented reality (AR) system in OpticStudio
    [12] Y. Ye, D. Pu, Y. Zhou, and L. J. A. o. Chen, "Diffraction characteristics of a submicrometer grating for a light guide plate," vol. 46, no. 17, pp. 3396-3399, 2007.
    [13] Exclusive: Lumus Maximus 2K x 2K Per Eye, >3000 Nits, 50° FOV with Through-the-Optics Pictures (https://kguttag.com/2021/05/24/exclusive-lumus-maximus-2k-x-2k-per-eye-3000-nits-50-fov-with-though-the-optics-pictures/)
    [14] J.A. WOOLLAM (https://materize.com/infrastructure/ellipsometer/)
    [15] Report:Desert Silicon( https://desertsilicon.com/wp-content/uploads/Data-Sheet-Ti-452.pdf).
    [16] 孫慶成教授團隊提供之耦合效率數據
    [17] PHY217 Observational Astronomy,L08: Using Telescopes
    (https://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/telescopes/l08/)
    [18] 劉遠袖:奈米壓印技術製作全介電光學繞射元件

    QR CODE
    :::