跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭中瑋
Chung-Wei Cheng
論文名稱: 紅外波段高品質因素導波共振濾波器
Study on High Quality-Factor Guided-Mode Resonance Filters in Infrared Region
指導教授: 伍茂仁
Mount-Learn Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 71
中文關鍵詞: 濾波器品質因素窄頻波導
外文關鍵詞: waveguide, GMR, filter, quality factor
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文裡,相較於傳統光學濾波器是以多層薄膜堆疊的方式濾波,我們想利用導波模態共振濾波器這種簡單結構的濾波器。希望未來能應用於雷射共振腔裡的高反射鏡,使得出光的雷射為一個很純和指向性高的波長。所以我們理論設計的濾波器,其頻譜特性的目標為:高品質因素,故共振線寬能小於0.1nm;提高雜訊比,側帶高穿透率區域能大於700nm;最大穿透率能超過90%。而共振波長則以紅外波段為主。
    我們提出的結構分別為:波導和光柵材料選擇SiNx,低被覆層為二氧化矽。先利用波導理論設計出波導厚度與特徵模態,爾後利用相位匹配得到光柵的週期,接著引入等效介質理論觀察側帶的穿透率。最後經過製程的容忍度分析,並實際製作出設計的導波模態共振濾波器,對模擬進行比對和驗證。
    設計出的導波模態共振濾波器,在TE和TM模態下會有不同的結構參數。在光柵厚度為30nm下:針對TE模態,共振波長在1550.4nm,共振線寬為0.1nm,側帶高穿透率區域為680.8nm,品質因素為15504,最大穿透率為0.93。而TM模態,共振波長在1549.9nm,共振線寬為0.011nm,側帶高穿透率區域為733.76nm,品質因素為140902,最大穿透率為0.926。成功設計出符合我們目標的導波模態共振濾波器。
    製程則以TE模態為例,實地量測後共振波長在1.58μm,共振線寬為0.92nm,側帶高穿透率區域為415nnm,品質因素為1718,最大穿透率約為0.94,這與將結構參數代入模擬計算得到的頻譜特性大致吻合。至此,我們成功的實際製作出滿足我們設定目標的導波模態共振波器。


    In this letter, the two-layer ultranarrow bandstop guided-mode resonance filter with a flattened sideband within a wide spectral range is implemented by using the combination of a subwavelength grating, a waveguide layer with multiple guided modes, and a lower cladding layer with a quarter-wave thickness. The proposed filter based on a free-standing silicon nitride membrane suspended on a silicon substrate is realized by using the anisotropic wet etching to remove the substrate beneath the silicon nitride layer. Both of grating and waveguide structures are fabricated simultaneously on a silicon nitride membrane. Moreover, the silicon dioxide membrane playing a role on modifying the spectral response of proposed GMR filter is deposited beneath the free-standing silicon nitride layer.
    The incident light is TE mode and the thickness of grating is 30nm. The resonance wavelength of proposed band-stop filter is controlled at 1550.4nm with a linewidth (FWHM) less than 0.1 nm. The improved spectral performance including the sideband can be extended to be nm with the maximum transmittance greater than 93%. The quality factor is 15504. However, the incident light is TM mode and the thickness of grating is 30nm. The resonance wavelength of proposed band-stop filter is controlled at 1549.9nm with a linewidth (FWHM) less than 0.011 nm. The improved spectral performance including the sideband can be extended to be nm with the maximum transmittance greater than 93%. The quality factor is 140902.

    摘要............................................................i 致謝辭...........................................................iv 目錄...........................................................vi 圖目錄....................................................... viii 第一章 導論...................................................1 1.1導波模態共振濾波器簡介..............................3 1.2研究動機............................................6 第二章 導波模態共振濾波器原理................................11 2.1光柵繞射理論.......................................13 2.2波導理論...........................................15 2.3等效折射率理論.....................................18 2.4導波模態共振原理...................................21 2.5嚴格耦合波理論.....................................25 第三章 紅外波段高品質因素導波共振濾波器結構設計與模擬........29 3.1設計與分析.........................................30 3.2驗證等效介質理論...................................47 3.3製程容忍度的模擬與分析.............................49 第四章 實驗製作..............................................52 4.1實驗流程...........................................53 4.2儀器介紹...........................................54 4.2.1感應耦合電漿蝕刻機.............................55 4.2.2電子束微影設備.................................56 4.2.3電漿輔助化學氣相沉積系統.......................57 4.3製作流程...........................................58 第五章 量測結果..............................................61 5.1儀器架設...........................................62 5.2模擬結果驗證.......................................64 第六章 結論..................................................68 參考文獻......................................................70

    [1]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396(1902)
    [2]A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 10, 1275(1965)
    [3]E. B. Grann, M. G. Moharam, and D. A. Pommet, ”Artificial uniaxial and biaxial dielectrics with use of two-dimensional sub-wavelength binary gratings,” J. Opt. Soc. Am. A11, 2695(1994)
    [4]李正中, “薄膜光學與鍍膜技術” 第四版
    [5]Southwell W. H. “Spectral response calculations of regate filters using couple-wave theory,” J. Opt. Soc. Am. A5, 1558-1564(1988)
    [6]S. Tibuleac, and R. Magnusson, “Diffractive Narrow-Band Transmission Filters Based on Guided-Mode Resonance Effects in Thin-Film Multilayers,” IEEE Photo. Tech Lett, VOL. 9, NO. 4(1997)
    [7]S. Tibuleac, R. Magnusson, ” Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett., Vol. 26, Issue 9, pp. 584-586 (May 2001)
    [8] Chao-Yi Tai a), Bayram Unal, and James S. Wilkinson, ”Optical coupling between a self-assembled microsphere grating and a rib waveguide,” Appl. Phys. Lett. 84, 3513(2004)
    [9]Che-Lung Hsu, Yung-Chih Liu, Chih-Ming Wang, Mount-Learn Wu, Ya-Lun Tsai, Yue-Hong Chou, Chien-Chieh Lee, and Jenq-Yang Chang,” Bulk-Micromachined Optical Filter Based on Guided-Mode Resonance in Silicon-Nitride Membrane,” J. Lightwave Tech., Vol. 24, Issue 4, pp. 1922- (April 2006)
    [10] S. Sinzinger and J. Jahns, Microoptics, Wiley-Vch, New York, 166 (1999)
    [11] R. C. Tyan, P. C. Sun, A. Scherer, and Yeshayahu, “Polarizing beam splitter based on anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings “, Opt. Let. 21, 761 (1996)
    [12] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Guided-mode resonances in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 8, 1470 (1990).
    [13] M. G.. Moharam and T. K. Gaylord, ”Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71 811(1981)
    [14]T. K. Gaylord and M. G. Moharam, “Analysis and application of optical diffraction by gratings,” Proc. IEEE 73, 894-937(1985)
    [15]Robert R. Boye and Raymond K. Kostuk ‘‘Investigation of the effect of finite grating size on the performance of guided-mode resonance filters” Appl. Opt. 39, 3649 (2000).
    [16] Knop K. “Rigorous diffraction theory for transmission phase grating with deep rectangular grooves,”J. Opt. Soc. Am. 68 120(1978)

    QR CODE
    :::