跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳冠琿
Kuan-hun Chen
論文名稱: 超音波振動補助下料加工之有限元素分析
The finite-element analysis of blanking assisted with ultrasonic vibration
指導教授: 葉維磬
Wei-Ching Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 68
中文關鍵詞: 有限元素超音波振動下料加工
外文關鍵詞: ultrasonic vibration, blanking, finite-element
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用商業有限元素軟體DEFORM-2D,分析超音波振動輔助下料加工問題,本文首先依據Hayashi等人[15]之實驗結果,驗證有限元素軟體DEFORM-2D對於下料加工分析之適妥性,利用母模附加超音波振動來輔助下料加工,並分別探討不同振動方向、振幅及振動頻率對下料加工時沖頭負載及斷面形狀之效應。結果顯示,超音波振動對於降低沖頭負載及提升斷面品質具有良好之效應,並且,透過增加振幅及振動頻率,可增加其效應。


    This paper employs DEFORM-2D software to analys the blanking problems with ultrasonic vibration. Firstly the result of experiment by Hatanaka and Yamaguchi is applied to improve the accuracy of DEFORM-2D software in blanking process. Different vibration direction, amplitude and frequency are discussed separately to know the effect of punch load and edge profile in blanking process with vibration buttom die. The result reveals that ultrasonic vibration can decrease the punch load and improve the quality of edge profile by increasing the amplitude and frequency.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 vii 符號索引 x 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 8 第二章 基本理論 9 2-1 Update Lagrangian Formulation(ULF)理論 9 2-2 有限元素分析基本概念 10 2-3 DEFORM-2D破壞問題的處理 14 2-4 延性破壞準則 15 2-5 超音波加工基本理論 17 2-6下料加工製品之斷面形狀 19 第三章 DEFORM有限元素介紹 21 3-1 基本假設: 21 3-2 DEFORM之架構與各部份功能之介紹 22 3-3 DEFORM應用於超音波下料加工問題的設定與操作程序 24 3-3-1 前處理器(Pre-processor) 24 3-3-2 後處理器(Post-processor) 26 第四章 結果與討論 27 4-1 實驗驗證 27 4-2 超音波振動輔助下料模擬分析 28 4-3 徑向超音波振動對下料加工之效應 29 4-3-1 徑向超音波振動對沖頭負載之效應 29 4-3-2 徑向超音波振動對斷面品質之效應 30 4-4 軸向超音波振動對下料加工之效應 32 4-4-1 軸向超音波振動對沖頭負載之效應 32 4-4-2 軸向超音波振動對斷面品質之效應 33 4-5 軸、徑向超音波振動效應比較 34 4-5-1軸、徑向超音波振動對沖頭負載之效應比較 34 4-5-2 軸、徑向超音波振動對斷面品質之效應比較 35 第五章 結論與建議 37 5-1 結論 37 5-2 建議 38 參考文獻 39 附錄 66

    [1] J. Tsujina, T. Ueoka, H. Sato, K. Takiguchi and K. Takahashi, “Characteristics of ultrasonic bending of metal plates using a longitudinal vibration die and punch”, IEEE Ultrasonic Symposium, pp.863-866, 1992.
    [2] A. Pasierb and A. Wojnar, “An experimental investigation of deep drawing and drawing processes of thin - walled products with utilization of ultrasonic vibrations”, Journal of Materials Processing Technology, Vol 34, pp.489-494, 1992.
    [3] K. Siegert and A. Mock, “Wire drawing with ultrasonically oscillating dies”, Journal of Materials Processing Technology, Vol 60, pp.657-660, 1996.
    [4] J. Petruzelka, J. Sarmanova and A. Sarman, “The effect of ultrasound on tube drawing”, Journal of Materials Processing Technology, Vol 60, pp.661-668, 1996.
    [5] T.C. Lee, L.C. Chan and P.F. Zheng, “Application of the finite-element deformation method in the fine blanking process”, Journal of Materials Processing Technology, Vol 63, pp.744-749, 1997.
    [6] T. Jimma, Y. Kasuga, N. Iwaki, O. Miyazawa, E. Mori, K. Ito and H. Hatano, “An application of ultrasonic vibration to the deep drawing process”, Journal of Materials Processing Technology, Vol 80-81, pp.406-412, 1998.
    [7] M. Samuel, “FEM simulations and experimental analysis of parameters of influence in the blanking process”, Journal of Materials Processing Technology, Vol 84, pp.97–106, 1998.
    [8] T. Pyttel, R. John and M. Hoogen, “A finite element based model for the description of aluminium sheet blanking”, International Journal of Machine Tools & Manufacture, Vol 40, pp.1993–2002, 2000.
    [9] S.K. Maiti, A.A. Ambekar, U.P. Singh, P.P. Date and K. Narasimhan, “Assessment of influence of some process parameters on sheet metal blanking”, Journal of Materials Processing Technology, Vol 102, pp. 249–256, 2000.
    [10] M. Murakawa and M. Jin, “The utility of radially and ultrasonically vibrated dies in the wire drawing process”, Journal of Materials Processing Technology, Vol 113, pp.81-86, 2001.
    [11] R. Hambli and M. Reszka, “Fracture criteria identication using an inverse technique method and blanking experiment”, International Journal of Mechanical Sciences, Vol 44, pp.1349–1361, 2002.
    [12] A.M. Goijaerts, L.E. Govaert and F.P.T. Baaijens, “Experimental and Numerical Investigation on the Influence of Process Speed on the Blanking Process”, ASME Journal of Manufacturing Science and Engineering, Vol 124, pp.416-419, 2002.
    [13] M. Rachik, J.M. Roelandt and A. Maillard, “Some phenomenological and computational aspects of sheet metal blanking simulation”, Journal of Materials Processing Technology, Vol 128, pp.256–265, 2002.
    [14] N. Hatanaka and K. Yamaguchi, “Finite element simulation of the shearing mechanism in the blanking of sheet metal”, Journal of Materials Processing Technology, Vol 139, pp.64–70, 2003.
    [15] M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J.C. Hung, Y.C. Tsai and C.H. Hung, “Simulation of ultrasonic-vibration drawing using the finite element method (FEM)”, Journal of Materials Processing Technology, Vol 140, pp.30–35, 2003.
    [16] V.C. Kumar and I.M. Hutchings, “Reduction of the Sliding Friction of Metals by the Application of Longitudinal or Transverse Ultrasonic Vibration”, Tribology International, 37, pp.833–840, 2004.
    [17] S.A.A.A. Mousavi, H. Feizi, and R. Madoliat, “Investigations on the effects of ultrasonic vibrations in the extrusion process”, Journal of Materials Processing Technology, Vol 187-188, pp.657-661, 2007.
    [18] Y. Daud, M. Lucas and Z. Huang, “Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium”, Journal of Materials Processing Technology, Vol 186, pp.179-190, 2007.
    [19] Y. Ashida and H. Aoyama, “Press forming using ultrasonic vibration”, Journal of Materials Processing Technology, Vol 187-188, pp.118-122, 2007.
    [20] S. Yu, X. Xie, J. Zhang, and Z. Zhao, “Ductile fracture modeling of initiation and propagation in sheet-metal blanking processes”, Journal of Materials Processing Technology, Vol 187–188, pp.169–172, 2007.
    [21] P. Brozzo, B. Deluca and R. Rendina, “A new method for the prediction of formability limits in metal sheets”, sheet metal forming and formability, Proc. 7th Biennial Conf. Int. Deep Drawing Research Group, 1972.
    [22] C. Husson, J.P.M. Correia, L. Daridon and S. Ahzi, “Finite elements simulations of thin copper sheets blanking: Study of blanking parameters on sheared edge quality”, Journal of Material Processing Technology, Vol 199, pp.74–83, 2008.
    [23] C. Husson, “Simulation numérique de la mise en forme des tôles métalliques appliquées à la connectique: étude de la découpe”, PhD Thesis, Univeristé Louis Pasteur, Strasbourg, France, 2004.
    [24] A. Rafsanjani, S. Abbasion, A. Farshidianfar, N. Irani, “Investigation of the viscous and thermal effects on ductile fracture in sheet metal blanking process”, The International Journal of Advanced Manufacturing Technology, Vol 45 5-6, pp.459-469, 2009.
    [25] H.D. Hibbitt, P.V. Marcal and J.R. Rice, “A Finite Element Formulation for problems of large strain and displacement”, International Journal of Solids and Structures, Vol 6, pp.1069-1086, 1970.
    [26] R.M. Mcmeeking and J.R. Rice, “Finite Element Formulation for Problem of Large elastic-plastic deformation”, International Journal of Solids and Structures, Vol 11, pp.601-616, 1975.
    [27] “DEFORMTM 2D Version 9.0 User’s Manual”, Scientific Forming Technologies Corporation.
    [28] H.C. Lee, J.S. Choi, K.H. Jung and Y.T. Im, “Application of element deletion method for numerical analyses of cracking”, Journal of Achievement in Materials and Manufacturing Engineering, Vol 35, pp.154-161, 2009.
    [29] H.S. Alsos, “A comparative study on shell element deletion and element splitting”, Impact & Crashworthiness Laboratory, Report No. 127, MIT, 1-94, 2004.
    [30] A.M. Frudenthal, “The Inelastic Behaviour of Engineering Materials and Structure”, John Wiley, 1950
    [31] M.G. Cockroft and D.J. Latham, “Ductility and the workability of metals”, Journal Institute of Metals, Vol 96, pp.33–39, 1968.
    [32] S.I. Oh, C.C. Chen, and S. Kobayashi, “Ductile Fracture in Axisymmetric Extrusion and Drawing”, ASME Journal of Engineering for Industry, Vol 101, pp.36–44, 1979.
    [33] B. Dodd and Y. Bai, “Ductile Fracture and Ductility”, Academic Press, London, 1987.
    [34] F.A. McClintock, “A criterion for ductile fracture by the growth of holes”, ASME Journal of applied mechanics, Vol 35, pp.363–371, 1968
    [35] J.R. Rice and D.M. Tracey, “On the ductile enlargement of voids in triaxial stress fields”, Journal of the Mechanics and Physics of Solids, Vol 17, pp.201, 1969.
    [36] M. Oyane, T. Sato, K. Okimoto and S. Shima, “Criteria for ductile fracture and their applications”, Journal of materials processing technology, Vol 4, pp.65–81, 1980.
    [37] K. Komori, “Ductile fracture criteria for simulating shear by node separation method”, Theoretical and Applied Fracture Mechanics, Vol 43, pp.101–114, 2005.
    [38] A.M. Goijaerts, L.E. Govaert and F.P.T. Baaijens, “Prediction of ductile fracture in metal blanking”, ASME Journal of Manufacturing Science and Engineering, Vol 122, pp.476-483, 2000.
    [39] 余煥騰、陳適範,金屬塑性加工學,三版,全華科技圖書股份有限公司,台北市,1994。

    QR CODE
    :::