跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳炳文
Ping-Wen Chen
論文名稱: 正交多工正交相位調變之錯誤更正研究
Error Correction for Orthogonally-Multiplexed Orthogonal Phase Modulation
指導教授: 鐘嘉德
Char-Dir Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 60
中文關鍵詞: 正交多工正交相位調變里德—所羅門碼頻譜效率編碼增益
外文關鍵詞: Orthogonally-Multiplexed Orthogonal Phase Modulati, Reed-Solomon Codes, Spectral Efficiency, Coding Gain
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文擬對一新型調變家族作一探討研究,此調變家族包含現有已存在的調變型式,如正交分頻多工(Orthogonal Frequency-Division Multiplexing),及尚未發現的調變型式,論文中即針對此新型調變家族,進行正交多工正交相位調變(Orthogonally-Multiplexed Orthogonal Phase Modulation)之錯誤更正研究。我們在論文中提出兩種機制,以適用於此各參數之調變家族,系統中以里德—所羅門碼(Reed-Solomon Codes)為通道錯誤控制碼,並以伯利肯普演算法(Berlekamp Algorithm)來作解碼,除了推導出錯誤機率外,也以電腦模擬驗證之。在論文中不但評估經過通道編碼之系統其效能趨勢,並在頻譜效率(Spectral Efficiency)相同之下,將未編碼系統與已編碼系統做一比較,進而討論編碼增益(Coding Gain)。


    A novel class of Orthogonally-Multiplexed Orthogonal Phase Modulated (OMOPM) signals is investigated in this thesis. The research focus is on the application of the error-correcting block code to the OMOPM signals. The system error probability expression is derived by an exact analysis and verified by computer simulations. The performance comparison between coded and uncoded OMOPM systems is presented.

    圖目 III 表目 V 第一章緒論 1 1.1 正交多工正交相位調變信號之簡介 1 1.2 前向錯誤更正概念 6 1.3 論文研究動機 7 第二章系統概述 8 2.1 系統模型 8 2.2 正交多工正交相位調變之同調偵測 12 2.3 BCH碼及R-S碼 16 2.4 界限距離解碼與伯利肯普演算法 17 第三章聯合編碼之效能評估 18 3.1 錯誤機率分析 18 3.2 分析與模擬之結果 19 3.3 編碼與未編碼之系統在相同頻譜效率下之比較 28 第四章個別編碼之效能評估 37 4.1 錯誤機率分析 37 4.2 分析與模擬之結果 38 4.3 編碼與未編碼之系統在相同頻譜效率下之比較 47 4.4 聯合編碼與個別編碼之效能比較 54 第五章結論 56 參考文獻 58 中英對照表 60

    【1】 C.D. Chung, “Coherent and Differentially Coherent Detections of Orthogonally-Multiplexed Orthogonal Phase Modulated Signals,” unpublished notes, 2000.
    【2】 C.D. Chung, “A New Modulation Class,” in Proc. 1999 International Symposium on Communications (ISCOM’99), Kaohsiung, Taiwan, ROC, pp. 269-273, Nov. 1999.
    【3】 I.S. Reed and R.A. Scholtz, “N-orthogonal phase-modulated codes,” IEEE Trans. Inform. Theory, vol. IT-12, pp. 388-395, July 1966.
    【4】 W.C. Lindsey and M.K. Simon, Telecommunication Systems Engineering. Englewood Cliffs, N.J.: Prentice Hall, 1973.
    【5】 R.W. Chang, “Synthesis of band-limited orthogonal signals for multi-channel data transmission,” Bell Syst. Tech. J., vol. 45, pp. 1775-1796, Dec. 1966.
    【6】 J.A.C. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come,” IEEE Commun. Mag., vol. 28, pp. 5-14, May 1990.
    【7】 I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” J. Soc. Ind. Appl. Math., 8, pp. 300-304, June 1960.
    【8】 E. R. Berlekamp, “On Decoding Binary Bose-Chaudhuri-Hocquenghem Codes,” IEEE Trans. Inf. Theory, IT-11, pp. 577-580. October 1965.
    【9】 E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
    【10】A. Hocquenghem, “Codes corecteurs d’erreurs,” Chiffres, 2, pp. 147-156, 1959.
    【11】R. C. Bose and D.K. Ray-Chaudhuri, “On a Class of Error Correcting Binary Group Codes,” Inf. Control, 3, pp. 68-79, March 1960.
    【12】林宏泰, “正交多工正交相位調變在相加性白高斯雜訊通道下之次佳化同調與差分同調之解調,” 國立中央大學電機工程研究所碩士論文, 中華民國, 2000.
    【13】G. Ungerboeck, “Channel Coding with Multilevel Phase Signals,” IEEE Trans. Inform. Theory, vol. 17-28, Jan. 1982, pp. 55-67.
    【14】C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes(1),” in Proc. ICC’93, Geneva, Switzerland, May 1993, pp. 1064-1070.
    【15】W. W. Peterson, “Encoding and Error-Correction Procedures for the Bose-Chaudhuri Codes,” IRE Trans. Inf. Theory, IT-6, pp. 459-470, September 1960.
    【16】S. Lin and D. J. Costello Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, 1983.
    【17】M.K. Simon, S.M. Hinedi and W.C. Lindesy, Digital Communication Techniques: Signal Design and Detection. Englewood Cliffs, N.J.: Prentice Hall, 1995.
    【18】J.G. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill, 2001.

    QR CODE
    :::