| 研究生: |
蔡佩璇 Pei-Hsun Tsai |
|---|---|
| 論文名稱: |
利用恆溫吸附曲線及恆溫滴定微卡計探討單股及雙股DNA與Hydroxyapatite間交互作用之機制與熱力學 Isotherm and Isothermal Titration Microcalorimetric Studies of Interaction Mechanism and Thermodynamics between ssDNA and dsDNA with Hydroxyapatite |
| 指導教授: |
陳文逸
Wen-Yih Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 恆溫滴定微卡計 、恆溫吸附曲線 、Hydroxyapatite(HA) 、雙股去氧核醣核酸 、單股去氧核醣核酸 |
| 外文關鍵詞: | binding isotherm, ssDNA, Hydroxyapatite(HA), dsDNA, ITC |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Hydroxyapatite(HA) chromatography 已經廣泛的被利用來分離單股DNA和雙股DNA,此技術是利用單股DNA對HA之吸附親和力較其雙股DNA小的原理來做分離,但是之間的交互作用與分離機制目前並無完整的研究討論。因此本研究主要是利用等溫吸附線與恆溫滴定微卡計(ITC)來探討HA與單股DNA和雙股DNA的吸附機制與熱力學分析。在實驗之部分,我們設計不同的條件,包括不同的環境因子(溫度、鹽濃度和pH)以及DNA組成(GC content、length、GC stacking rich & CG stacking rich)等來探討各種不同的效應對吸附行為的影響。
由實驗結果顯示,在等溫吸附線的分析部分,發現對於雙股DNA而言,對HA的交互作用主要是以靜電作用力為主,因此疏水作用力或結構之改變並不會對其造成太大的影響;而對於單股DNA,因為其鹼基是暴露在外,所以與HA之交互作用會受較多因素之影響,例如靜電作用力、疏水作用力與結構之穩定性等,因此在不同的環境因子或是DNA組成的不同,都會造成單股DNA與HA之親和力改變。而且我們也發現單股DNA有多層吸附(multi-layer adsorption)之現象,尤其是在高鹽的環境中,這也說明了單股DNA在吸附過程中受到多重作用力的影響。
而在熱力學分析的部分,發現在不同的鹽濃度下,雙股DNA及單股DNA皆為吸熱的反應,所以此吸附過程為entropy driven,表示去水合在此貢獻中相當重要。並且發現單股DNA之吸附焓皆大於雙股DNA,表示對於單股DNA,疏水作用力之貢獻較大,然而對於雙股DNA,則是靜電作用力貢獻較大。
藉由等溫吸附線與熱力學分析,我們可以清楚了解不同環境因子對於雙股DNA和單股DNA與HA之鍵結行為和機制的影響,此研究結果可提供生物辨識作用方面的基礎資訊。
Hydroxyapatite(HA) chromatography has been used extensively for the separation of single-strand DNA and double-strand DNA. This technique is based on the fact that ssDNA have less affinity for hydroxylapatite than their dsDNA. But the details of the mechanism of the separation of ssDNA and dsDNA by hydroxyapatite are still not clear. In this study, we discussed the effects of environmental factors (i.e. salt concentration, temperature and pH) and different kinds of ssDNA and dsDNA (i.e. GC content, length, secondary structure effects and GC or CG stacking rich…) on the binding behavior. By equilibrium batch analysis, we measure the adsorption isotherm to evaluate the affinity ssDNA and dsDNA with HA, while isothermal titration microcalorimetric was used to measure the adsorption enthalpy. By the kinetics and thermodynamics analysis, we established an interaction mechanism to explain the ssDNA and dsDNA with HA interaction behavior.
By isotherm analysis, we realized that dsDNA mainly use electrostatic force to bind with HA. So in high salt concentration, the phosphate of dsDNA interaction was shielded Na+ and the affinity would be decreased. Because the surface of ssDNA molecule contains hydrophobic bases and negative charge phosphate backbone, so both of the hydrophobic and electrostatic interactions affect the affinity of ssDNA for HA. In addition, stability of structure is also important for ssDNA, so increasing in the structural order of ssDNA would increase the binding affinity of ssDNA with HA. However, for oligo ssDNAs (15mer and 60mer) in this study, the hydrophobic interaction is more revealed and multi- layers adsorption were observed.
By thermodynamics analysis, we found that the adsorption enthalpies of ssDNA and dsDNA are all endothermic in this study and the dehydration step in the binding process plays a key role. This investigation offers useful knowledge of ssDNA and dsDNA with HA binding behavior and fundamental thermodynamics information in biorecognition system.
1.Watanabe T., K. Makitsuru, H. Nakazawa, S. Hara, T. Suchiro, A. Yamamoto, T. Hiraide and T. Ogawa, “Separation of double-strand DNA fragment by high-performance liquid chromotagraphy using a ceramic hydroxyapatite column,” Analytica Chimica Acta , 1999, 386, 69
2.Fabrizio E.F., A. Nadim and J.D. Sterling, “Resolution of Multiple ssDNA Structures in Free Solution Electrophoresis,” Anal. Chem., 2003, 75, 5012
3.Heller M.J. and R.H. Tullis, ”Microelectrophoresis for the separation of DNA fragments,” Electrophoresis, 1992, 13, 512
4.Upcroft P. and J.A. Upcroft, “Comparison of properties of agarose for electrophoresis of DNA,“ J.Chromatogr., 1993, 618, 79
5.Cooney C.A. ” Techniques and high resolution DNA size markers for pulsed field gel electrophoresis,” Mol. Biotech., 1994, 2, 119
6.Ellegren H. and T. Laas, “Size-exclusion chromatography of DNA restriction fragments. Fragment length determinations and a comparison with the behaviour of proteins in size-exclusion chromatography,” J. Chromatogr., 1989, 467, 217
7.Yamakawa H., K.I. Higashino and O. Ohara, ” Sequence-Dependent DNA Separation by Anion-Exchange High-Performance Liquid Chromatography,” Analytical Biochemistry, 1996, 240, 242
8.Kato Y., M. Sasaki, T. Hashimoto, T. Murotsu, S. Fukushige, and K. Matsubara, “A new packing for separation of DNA restriction fragments by high performance liquid chromatography,” J Biochem., 1984, 95, 83
9.Kato Y., K.Nakamura and T. Hashimoto, ” New ion exchanger for the separation of proteins and nucleic acids, “ J. Chromatogr., 1983, 266, 385
10.Kato Y., M. Sasaki, T. Hashimoto, T. Murotsu, S. Fukushige and K. Matsubara, “Separation of DNA restriction fragments by high-performance ion-exchange chromatography,“ J. Chromatogr., 1983, 265, 342
11.Yamasaki Y., A. Yokoyama, A. Onaka, Y. Kato, T. Murotsu and K. Matsubara, ”High-performance hydroxyapatite chromatography of nucleic acids,” Journal of Chromatography, 1989, 467, 299
12.Bernardi G., “Chromatography of Nucleic Acids on Hydroxyapatite Columns,” Resolution based on nucleic acid structure, 1971, 95
13.Bernardi G., “Chromatography of Nucleic Acids on Hydroxyapatite,” Nature, 1965, 205, 779
14.Miyazawa Y. and C.A. Thomas, “Nucleotide Composition of Short Segments of DNA Molecules,” J. Mol. Biol., 1965, 11, 223
15.Main R.K. and L. Cole, ”Chromatography of deoxyribonucleic acids on calcium phosphate columns,” Arch Biochem Biophys., 1957, 68, 186
16.Main R.K., M.J. Wilkins and L.J. Cole, “Partial Chromatography Separation of Pentose- and Deoxypentosenucleic Acids,” Science, 1959, 129, 331
17.Tiselius A., S. Hjerten and O. Levin, “Protein chromatography on calcium phosphate columns,“ Arch. Biochem.Biophys., 1956, 65, 132
18.Sudarsanan K. and R.A. Young, ”Significant precision in structural detail: Holly Springs hydroxyapatite,” Acta. Crystallogr., 1969, 25, 1534
19.Campbell M. K., “Biochemistry,” 3rd edition, 偉明圖書, 2001
20.Zubay G.L., W.P. William, E.V. Dennis, ”Principles of Biochemistry,” 美商麥格羅.希爾國際股份有限公司, 2002
21.Watson J.D. and F.H.C. Crick., “Molecular Structure of Nucleic Acids,” Nature, 1953, 171,737
22.Rentzeperis D., R. Shikiya, S. Maiti, J. Ho and L.A. Marky, ”Folding of Intramolecular DNA Hairpin Loops : Enthalpy-Entropy Compensations and Hydration Contributions,” J. Phys. Chem. B, 2002, 106, 9945
23.劉安振, ”利用恆溫滴定微卡計於核酸分子雜交反應之熱力學與機制的研究,” 碩士論文,國立中央大學化學工程與材料工程研究所,2003.
24.Dickerson R.E., “Base Sequence and Helix Structure Variation in B and A DNA,” J. Mol. Biol., 1983, 166, 419
25.D.G. Alexeev, A.A. Lipanov and I.Y. Skuratovskii, ”Poly(dA) poly(dT) is a B-type double helix with a distinctively narrow minor groove,” Nature, 1987, 325, 821
26.A.H.J. Wang, G.J. Quigley, F.J. Kolpak, J.L. Crawford, J.H. Boom, G. Marel and A. Rich, ”Molecular Structure of a Left-handed Fragment at Atomic Resolution,” Nature, 1979, 282, 680.
27.Freier S.M, N. Sugimoto, A. Sinclair, D. Alkema, T. Neilson and R. Kierzek, ”Stability of XGCGCp, GCGCYp, and XGCGCYp Helixes: An Empirical Estimate of the Energetics of Hydrogen Bonds in Nucleic Acids,” Biochemistry, 1986, 25, 3214
28.Sheng Y.J., H.J. Lin, J.Z.Y. Chen and H.K. Tsao, ”Static Properties of a Stacking Chain,” Macromolecules, 2004, 37, 9631
29.Kool E.T., ”Preorganization of DNA : Design Principles for Improving Nucleic Acid Recognition by Synthetic Oligonucleotides,” Chem. Rev., 1997, 97, 1473
30.孫乃恩,孫東旭和朱德煦, “分子遺傳學”, 第八版, 南京大學出版社, 2000
31.高立安 “以表面電將共振儀研究單股去氧核醣核酸之二級結構於去氧核醣核酸雜交在動力學與反應機制的效應” 碩士論文,國立中央大學化學工程與材料工程研究所,2004
32.Martinez J.M., S.K.C. Elmroth and L. Kloo, “Influence of Sodium Ions on Dynamics and Structure of Single-Stranded DNA Oligomers: A Molecular Dynamics Study,” J. Am. Chem. Soc., 2001, 123, 12279
33.Liu A.C., L.Y. Chen, C.F. Chiou, H.R. Su, Y.C. Chan, P.H. Tasi, S.J. Chen and W.Y. Chen, “Thermodynamics and mechanism of ssDNA hybridization below the melting temperature by isothermal titration calorimetry,” Thermochimica Acta, 2005, in press.
34.Kadoya T., T. Isobe and M. Ebihara, “A new spherical hyroxyapatite for high performance liquid chromatography of proteins,” J. Liquid Chromatogr. , 1986, 9, 3543
35.Kawasaki T., “Theory of chromatography of rigid molecules on hydroxyapatite columns with small loads. IV. Estimation of the adsorption energy of nucleoside polyphosphates,” J. Chromatogr., 1978, 151, 95
36.Kato Y., ”High-performance hydroxyapatite chromatography of proteins,” J. Chromatogr., 1988, 398, 340
37.Schroder E., T. Jonsson and L. Poole, “Hydroxyapatite chromatography : altering the phosphate-dependent elution profile of protein as a function of pH,” Analytical Biochemistry, 2003, 313,176
38.Kawasaki K., M. Kambara, H. Matsumura and W. Norde, “A comparison of the adsorption of saliva proteins and some typical proteins onto the surface of hydroxyapatite,” Colloids and Surfaces B: Biointerfaces, 2003, 32, 321
39.Yin G., Z. Liu, J. Zhan, F. Ding and N. Yuan, ”Impacts of the surface charge property on protein adsorption on hydroxyapatite,” Chemical Engineering Journal, 2002, 87, 181
40.Jungbauer A., R. Hahn, K. Deinhofer and P. Luo, “Performance and Characterization of a Nanophased Porous Hydroxyapatite for Protein Chromatography,” Biotech Bioeng, 2004, 87, 364
41.Giovannini R. and R. Freitag, “Comparison of different types of ceramic hydroxyapatite for the chromatographic separation of plasmid DNA and a recombinant anti-Rhesus D antibody, “ Bioseparation, 2000, 9, 359
42.Aoyama K. and J. Chiba, ”Separation of different molecular forms of mouse IgA and IgM monoclonal antibodies by high-performance liquid chromatography on spherical hydroxyapatite beads,” J. Immunol. Methods, 1993, 162, 201
43.Juarez H., G.S. Ott, J.C. Chen, T.L. Brooks, L.H. Stanker, ” Separation of IgG idiotypes by high-performance hydroxylapatite chromatography,” Methods Enzymol., 1986, 121, 615
44.Hashizume H., K. Tanase1, K. Shiratake, H. Mori and S. Yamaki, ” Purfication and characterization of two soluble acid invertase isozymes from Japanese pear fruit,” Phytochemistry, 2003, 63, 125
45.Yu C.L., M.H. Huang, C.Y. Tsai, K.H. Sun, S.C. Hsieh, Y.Y. Tsai, S.T. Tsai, H.S. Yu and S.H. Han, ”The reactivity of sera from patients with systemic lupus erythematosus to seven different species of single and double stranded deoxyribonucleic acids,” Clin. Exp. Rheumatol., 1996, 14, 137
46.Hijerten S., “Calcium phosphate chromatography of normal human serum and of electrophoretically isolated serum proteins,” Biochim Biophys Acta., 1959, 31, 216
47.Bernardi G., “Chromatography of native deoxyribonucleic acid on calcium phosphate,” Biochem. Biophys. Res. Commun., 1961, 6, 54
48.Bernardi G. and S.N.Timasheff, “Chromatography of Ehrlich ascites tumor cell high molecular weight ribonucleic acid on calcium phosphate,” Biochem. Biophys. Res. Commun., 1961, 6, 58
49.Martinson H.G., “The Basis of fractionation of single-stranded Nucleic Acids on Hydroxyapatite,” Biochemistry, 1973, 12, 2731
50.Okazaki M., Y. Yoshida, S. Yamaguchi, M. Kaneno and J.C. Elliott, ”Affinity binding phenomena of DNA onto apatite crystals,” Biomaterials, 2001, 22, 2459
51.喜多亞矢子, 碩士論文, 日本山口大學, 2005,in press
52.Martinson H.G., “Role of the Double-Stranded Nucleic Acid Backbone Configuration in Adsorption Interaction,” Biochemistry, 1973, 12, 2737
53.Bram S. and Tougard P., “Polymorphism of natural DNA,” Nature New Biol., 1972, 239, 128
54.Ozawa S., K. Sugano, T. Sonehara, S. Fukuzono, A. Ichikawa ,N. Fukayama, M. Taylor, Y. Miyahara and T. Irie, “High Resolution for Single-Strand Conformation Polymorphism Analysis by Capillary Electrophoresis,” Anal. Chem., 2004, 76, 6122
55.Lopes P.M., H. Zhang and R. Koebner, ”Detection of Single Nucleotide Mutations in Wheat Using Single Strand Conformation Polymorphism Gels,” Plant Molecular Biology Reporter, 2001, 19, 159
56.Schwarz G., A. Sift, G. Wenzel and V. Mohler, ”DHPLC Scoring of a SNP between Promoter Sequences of HMW Glutenin x-type Alleles at the Glu-D1 Locus in Wheat,” J. Agric. Food Chem., 2003, 51, 4263
57.Tournier I., G. Raux, F.D. Fiore, I. Marechal, C. Leclerc, C. Martin, Q. Wang, M.P. Buisine, D.S. Lyonnet, S. Olschwang, T. Frebourg and M. Tosi” Analysis of the Allele-Specific Expression of the Mismatch Repair Gene MLH1Using a Simple DHPLC-Based Method” Human Mutation, 2004, 23, 379
58.Han W., S.P. Yip, J. Wang and M.K. Yap, ”Using denaturing HPLC for SNP discovery and genotyping, and establishing the linkage disequilibrium pattern for the all-trans-retinol dehydrogenase (RDH8) gene,” J. Hum. Genet., 2004, 49, 16
59.Schwonbeck S., A.K. Griep, N.G. Eichelmann, E.E. Förster, W. Meinl, H. Glatt, F.F. Bier, “Cohort analysis of a single nucleotide polymorphism on DNA chips,” Biosensors and Bioelectronics, 2004, 20, 956
60.Burmeister J., V. Bazilyanska, K. Grothe, B. Koehler, I. Dorn, B.D. Warner and E. Diessel, ”Single nucleotide polymorphism analysis by chip-based hybridization and direct current electrical detection of gold-labeled DNA,” Anal Bioanal. Chem., 2004, 379, 391
61.Michael O., ”The Invader assay for SNP genotyping,” Mutation Research, 2005, 573, 103
62.Ferreira G.N.M., J.M.S. Cabral and D.M.F. Prazeres, “Studies on the Batch Adsorption of Plasmid DNA onto Anion-Exchange Chromatographic Supports,” Biotechnol. Prog., 2000, 16, 416
63.Johnson R.D. and F.H. Arnold, ”The Temkin isotherm describes heterogeneous protein adsorption,” Biochmica et Biophysica Acta, 1995, 1247, 293
64.Tibbetts C., K. Johansson and L. Philipson, “Hydroxyapatite Chromatography and Formamide Denaturation of Adenovirus DNA,” Journal of Virology, 1973, 12, 218
65.Zuker M., “Mfold web sever for nucleic acid folding and hybridization prediction,” Nucleic Acids Res., 2003, 31, 3406
66.Michael F. and B.M. Pettitt, “Sodium and Chlorine Ions as Part of the DNA Solvation Shell,” Biophysical Journal, 1999, 77, 1769
67.Wang J. H., “The hydration of deoxyribonucleic acid,” J. Am. Chem. Soc., 1955, 77, 258
68.Kubinec M. G. and D. E. Wemmer, “NMR evidence for DNA bound water in solution,” J. Am. Chem. Soc., 1992, 114, 8739
69.Rau D.C. and A. Parsegian, “Direct measurement of the intermolecular forces between counterion-condensed DNA double helices: evidence for long range attractive hydration forces,” Biophys. J.” 1992, 61, 246
70.Urabe H., M. Kato and Y. Tominaga, ”Counterion dependence of water of hydration in DNA gel,” J. Chem. Phys., 1990, 92, 768
71.Forester T.R. and I.R. McDonald, “Molecular dynamics studies of the behaviour of water molecules and small ions in concentrated solutions of polymeric B-DNA,” Mol. Phys., 1991, 72, 643
72.Nishimura Y., C. Torigoe and M. Tsuboi, “Salt induced B-A transition of poly(dG) poly(dC) and the stabilization of A form by its methylation,” Nucleic Acids Res., 1986, 14, 2737
73.Bram S.and P. Tougard “Polymorphism of natural DNA, ”Nature New Biol., 1972, 239, 128
74.方瓊儀, ”利用微卡計對於蛋白質與離子交換樹脂觸手間親疏水作用力的研究,” 碩士論文,國立中央大學化學工程與材料工程研究所, 2002
75.黃祥鳴, “利用微卡計探討疏水作用對於蛋白質與吸附基材之交互作用機制以及蛋白質溶液行為之影響,”碩士論文, 國立中央大學化學工程與材料工程研究所, 2003
76.Lin F. Y., Chen W. Y., Hearn M. T. W., “Microcalorimetric Studies on the Interaction Mechanism between Proteins and Hydrophobic Solid Surfaces in Hydrophobic Interaction Chromatography: Effects of Salts, Hydrophobicity of the Sorbent, and Structure of the Protein,” Anal.Chem., 2001, 73, 3875