| 研究生: |
張夫韓 Fu-han Chang |
|---|---|
| 論文名稱: |
隨機布耳網路在多連線且臨界情形下的特性 |
| 指導教授: |
陳汕塘
Shan-Tarng Chen 陳宣毅 Hsuan-Yi Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 考夫曼隨機布爾網路 、布爾更新函數 、吸引子(循環)長度 、吸引子(循環)數目 、穩定元素 、穩定核心 、有關連元素 、不穩定元素 、流域 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的重要研究成果是發現隨機布爾網路於臨界相位且k愈大時的網路行為並不如前人所認為會發生混沌的現象,反而是傾向凍住的行為,即k愈大時,吸引子長度及數目分布愈短且愈少,也就是說,在大k且臨界相位時,元素狀態大多分布在流域裡。而且本文數值模擬發現,當10≤N≤350,2≤k≤6且臨界相位情形時(1)有關連元素數目與元素數目N之關係為N_RE∝N^(4/5);穩定核心數目和元素數目N之關係成正比。(2)當N固定350,2≤k≤6時,吸引子長度分布呈現類似Poisson型態,但吸引子數目的分布卻呈現類似power-law型態。
The most important conclusion of our thesis is that we found that Random Boolean networks on critical phase will not have appearance of chaos but it will have appearance of frozen when k is a high number. In other words, the distributions of attractor length and number will be short and few when k is higher. That is to say, when Random Boolean network is on critical phase and k is higher, most of states of elements will distribute in basin. Our numerical simulation finds that the two conclusions will follow the two statements below when Random Boolean network is on critical phase and 10≤N≤350,2≤k≤6. (1) The relation which is between relevant elements,“N_RE”, and the number of elements,“N”,is N_RE∝N^(4/5).Stable cores and the number of elements,“N”, are in direct proportion. (2) When we have 2≤k≤6 for N=350, the distribution of attractor length will be similar to Poisson distribution, but attractor numbers will be similar to power-law distribution.
[1] 胡守人譯,布侃南(M. Buchanan)著: 連結。天下遠見出版股份有限
公司(2003)。
[2] S. A. Kauffman, J. Theor. 22, 437 (1969).
[3] S. A. Kauffman, The Origins of Order(Oxford
University, New York, 1993).
[4] F. Fogelman-Soulié, Discr. Appl. Math. 9, 139 (1984).
[5] F. Fogelman-Soulié,Theor. Comput. Sci. 40, 275 (1985).
[6] H. Flyvbjerg, J. Phys. A 21, L 955 (1988).
[7] U. Bastolla and G. Parisi, Physica D 115, 203 (1998).
[8] H. Flyvbjerg and N. J. Kjær, J. Physics A 21, 1695
(1988).
[9] H. J. Hilhorst and M. Nijmeijer, J. Physique 48, 185,
(1987).
[10] B. Derrida and D. Stauffer, Europhys. Lett. 2, 739,
(1986).
[11] U. Bastolla and G. Parisi, J. Theor. Biol. 187, 117
(1997).
[12] Fogelman-Soulié F, Theor. Comput. Sci. 40, 275 (1985).
[13] S. Bilke and F. Sjunnesson, Physical Review E, Vol.
65, 016129 (2001).
[14] J. E. S. Socolar and S. A. Kauffman, Phys. Lett. 90,
068702 (2003).
[15] B. Samuelsson and C. Troein, Phys. Lett. 90, 098704
(2003).
[16] B. Drossel, Phys. Rev. E 72, 016110 (2005) .
[17] B. Drossel, T. Mihaljev and F. Greil, Phys. Rev. Lett.
94, 088701 (2005).
[18] U. Paul, V. Kaufman and B. Drossel, Phys. Rev. E 73,
026118 (2006).
[19] Fogelman-Soulié F, Discr. Appl. Math. 9, 139 (1984).
[20] U. Bastolla and G. Parisi, Physica D 115, 219 (1998).
[21] V. Kaufman, T. Mihaljev and B. Drossel, Phys. Rev. E
72, 046124 (2005).
[22] T. Mihaljev, B. Drossel, Phys. Rev. E 74, 046101
(2006).
[23] V. Kaufman, B. Drossel, New J. Phys., 8, 228 (2006).
[24] Florian Greil and Kevin E. Bassler, arXiv:0911.2481v1
(2003).
[25] Qiming Lu and Christof Teuscher, arXiv:0904.4052v1
(2009).
[26] Shan-Tarng Chen, Hsen-Che Tseng, Shu-Chin Wang and
Ping-Cheng Li, Modern Physics Letters B, Vol. 21, No
20 (2007) 1313-1320
[27] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.
L. Barabasi, Nature (London), 406, 651-654 (2000).
[28] K. W. Kohn, Mol. Biol. Cell 10, 2703-2734 (1999).
[29] P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S.
Judson, J. R. Knight, D. Lockshon, V. Narayan, M.
Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Yi, B.
Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar,
M. Yang, M. Johnston, S. Field, and J. M. Rothberg,
Nature (London), 406, 623 (2000).
[30] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho,
and G. M. Church, Nat. Genet. 22, 281-285 (1999).
[31] A. L. Barabasi and R. Albert, Science 286, 509-512
(1999).
[32] Method Skarja, Barbara Remic, and Lgor Jerman, CHAOS,
Vol. 14, No. 2, 205-216 (2004)