| 研究生: |
張祐祥 Yu-hsiang Chang |
|---|---|
| 論文名稱: |
以大型強子對撞機裡的緊湊渺子線圈偵測器尋找重夸克在半輕子頻道衰變成頂夸克和光子 Search for pair production of a heavy quark decaying into top quark and photon in semi-leptonic channel with the CMS detector in the LHC |
| 指導教授: |
余欣珊
Shin-Shan Yu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 重夸克 、緊湊渺子線圈 、大型強子對撞機 、頂夸克 、光子 |
| 外文關鍵詞: | heavy quark, CMS, LHC, top quark, photon |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用CMS在2012年所蒐集的積分亮度為19.7-1 fb、LHC質子對撞質心能量為8 TeV的數據來找尋激發態頂夸克。 在我們分析中的衰變過程和最終產物是:激發態頂夸克、反激發態頂夸克->頂夸克、光子、反頂夸克、光子->底夸克、W玻色子、光子、反底夸克、W玻色子、光子,然後其中一個W玻色子以輕子的方式衰變而另一個W玻色子以夸克的方式衰變,所以我們藉著要求事件中有兩個光子、一個輕子和至少四個噴流來定義訊號區域。χ2排序法被用來重建激發態頂夸克的質量,並且從數據中有十二個事件在訊號區域被觀察到。矩陣法被用在兩個光子的頻道裡來估計這十二個事件中的背景貢獻。這個研究的結果是沒有顯著的超過預期的多餘事件被觀察到,所以對於激發態頂夸克的質量我們以95%的信心水準設了一個低限在969 GeV/c2。
Using the data collected by the CMS detector in 2012, corresponding to a luminosity of 19.7 / fb of proton-proton collisions at LHC center-of-mass energy of 8 TeV, we search for the excited top quark, T*. The decay process and the final states studied in our analysis are: T* T*bar -> t γ tbar γ -> b W+ γ bbar W- γ, where one W boson decays hadronically and the other leptonically, so we define a signal region by requesting events with 2 photons, 1 lepton and >= 4jets. To reconstruct the invariant mass of T*, a χ2-sorting method is used and 12 events are observed in the signal region from data. The matrix method is used to estimate the background contribution among the observed 12 events in the di-photon channel. As a result of this study, no significant excess is observed over expectations and a lower limit is set on a t* quark mass of 969 GeV/c2 at 95% confidence level.
Reference
[1]
H. Georgi, L. Kaplan, D. Morin, and A. Schenk, “Effects of top compositeness”,Phys.Rev. D51 (1995) 3888–3894, doi:10.1103/PhysRevD.51.3888,arXiv:hep-ph/9410307.
[2]
E. Eichten, K. D. Lane, and M. E. Peskin, “New Tests for Quark and Lepton
Substructure”, Phys.Rev.Lett. 50 (1983) 811–814, doi:10.1103/PhysRevLett.50.811.
[3]
B. Lillie, J. Shu, and T. M. Tait, “Top Compositeness at the Tevatron and LHC”, JHEP
0804 (2008) 087, doi:10.1088/1126-6708/2008/04/087, arXiv:0712.3057.
[4]
A. Pomarol and J. Serra, “Top Quark Compositeness: Feasibility and Implications”,
Phys.Rev. D78 (2008) 074026, doi:10.1103/PhysRevD.78.074026, arXiv:0806.3247.
[5]
K. Kumar, T. M. Tait, and R. Vega-Morales, “Manifestations of Top Compositeness
at Colliders”, JHEP 0905 (2009) 022, doi:10.1088/1126-6708/2009/05/022,
arXiv:0901.3808.
[6]
B. Moussallam and V. Soni, “PRODUCTION OF HEAVY SPIN 3/2 FERMIONS IN
COLLIDERS”, Phys.Rev. D39 (1989) 1883–1891, doi:10.1103/PhysRevD.39.1883.
[7]
D. A. Dicus, S. Gibbons, and S. Nandi, “Collider production of spin 3/2 quarks”,
arXiv:hep-ph/9806312.
[8]
W. Rarita and J. Schwinger, “On a theory of particles with half integral spin”,
Phys.Rev. 60 (1941) 61, doi:10.1103/PhysRev.60.61.
[9]
B. Hassanain, J. March-Russell, and J. Rosa, “On the possibility of light string
resonances at the LHC and Tevatron from Randall-Sundrum throats”, JHEP 0907
(2009) 077, doi:10.1088/1126-6708/2009/07/077, arXiv:0904.4108.
[10]
L. Randall and R. Sundrum, “A Large mass hierarchy from a small extra dimension”,
Phys.Rev.Lett. 83 (1999) 3370–3373, doi:10.1103/PhysRevLett.83.3370,
arXiv:hep-ph/9905221.
[11]
W. Stirling and E. Vryonidou, “Effect of spin-3/2 top quark excitation on tt¯
production at the LHC”, JHEP 1201 (2012) 055, doi:10.1007/JHEP01(2012)055,
arXiv:1110.1565.
[12]
Fang-Ying Tsai, “Search for Pair Production of t*-> t + photon : Estimation of
Photon Purity and Study of the Top and W Mass Resolution”,
http://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi/ccd=drnGQv/record?r1=2&h1=
0
[13]
The CMS Collaboration, The CMS tracker system project: Technical Design Report.
Technical Design Report CMS, Geneva: CERN, 1997. 2.2.3
[14]
The CMS Collaboration, TheCMS tracker: addendum to the Technical Design Report.
Technical Design Report CMS, Geneva: CERN, 2000. 2.2.3
[15]
The CMS ECAL: Technical Design Report. Technical Design Report, Geneva: CERN,
December1997. 2.2.4
[16]
P.Bloch, R. Brown, P.Lecoq, and H. Rykaczewski, Changes to CMS ECAL electronics:
addendum to the Technical Design Report. Techical Design Report CMS, Geneva: 58
CERN, 2002. 2.2.4
[17]
CMS Collaboration, CERN/LHCC 20-016(2006), CMS TDR 8.1
[18]
The CMS Collaboration, The CMS hadron calorimeter project: Technical Design
Report. Technical Design Report CMS, Geneva: CERN, 1997. 2.2.5
[19]
J. Damgov and S. Kunori, private commuication
[20]
Efe Yazgan, Thesis, Department of Physics, Middle East Technical University (2007)
[21]
Andrew W. Rose. The Level-1 Trigger of the CMS experiment at the LHC and the
Super-LHC. University of London and the Diploma of Imperial College (2009).
https://workspace.imperial.ac.uk/highenergyphysics/Public/theses/Rose.pdf
[22]
J. Brooke, Performance of the CMS Level-1 Trigger, arXiv:1302.2469(2013).
http://arxiv.org/abs/1302.2469
[23]
The TriDAS Project, Technical Design Report, Volume 1: The Trigger Systems. CMS
(2000). http://cmsdoc.cern.ch/cms/TDR/TRIGGER-public/trigger.html
[24]
Giuseppe Bagliesi. Reconstruction and identification of tau decays at CMS. J. Phys.:
Conf. Ser. 119 032005 doi:10.1088/1742-6596/119/3/032005 (2008)
http://iopscience.iop.org/1742-6596/119/3/032005
[25]
The CMS High Level Trigger, http://arxiv.org/ftp/hep-ex/papers/0512/0512077.pdf
[26]
Electron Reconstruction in the CMS Electromagnetic Calorimeter
http://cds.cern.ch/record/687345/files/note01_034.pdf
[27]
S. Baffioni et al. Electron reconstruction in CMS. Eur. Phys. J. C 49, 1099–1116
(2007) DOI 10.1140/epjc/s10052-006-0175-5
http://inspirehep.net/record/713909/files/NOTE2006_040.pdf?version=1
[28]
R. Fr¨uhwirth, Application of Kalman filtering to track and vertex fitting, Nucl.
Instrum. Meth. A 262(1987) 444.
[29]
CMS collaboration, The CMS Physics Technical Design Report, Volume I: Detector
Performance and Software, CERN-LHCC-2006-001, CMS-TDR-8.1 (2006).
[30]
Ricardo Eusebi, Jet energy corrections and uncertainties in CMS: reducing their
impact on physics measurements, Journal of Physics: Conference Series 404 (2012)
012014 doi:10.1088/1742-6596/404/1/012014
[31]
Outer link of trigger path
http://j2eeps.cern.ch/cms-project-confdb-hltdev/browser/
For example, the run range 196531, one can go to the link, in left window choose:
online->collisions->2012->7e33->v2.5->HLT, and in the right window choose:
A->SingleElectron, and find the HLT
path”HLT_Ele25_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_TriCentralPFNoPUJet30_30_20”.
The L1 triggers “L1_SingleEG20 or L1_SingleEG22” can also be found in the right
most of trigger path.
[32]
Matteo Cacciari, Gavin P. Salam, Gregory Soyez, The anti-kt jet clustering algorithm,
JHEP 0804:063,2008,arXiv:0802.1189 [hep-ph]
[33]
S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Nucl. Phys. B 406 (1993)
187 and refs. therein; S. D. Ellis and D. E. Soper, Phys. Rev. D 48 (1993) 3160
[hep-ph/9305266].
[34]
Y. L. Dokshitzer, G. D. Leder, S. Moretti and B. R. Webber, JHEP 9708, 001 (1997)
[hep-ph/9707323]; M. Wobisch and T. Wengler, hep-ph/9907280.
[35]
Florian Beaudette, The CMS Particle Flow Algorithm, Proceedings of the
CHEF2013 Conference - Eds. J.C. Brient, R. Salerno, and Y. Sirois - p295 (2013), ISBN
978-2-7302-1624-1arXiv:1401.8155 [hep-ex]
[36]
CMS Collaboration. Particle-Flow Event Reconstruction in CMS and Performance for
Jets, Taus and EmissT . (CMS-PAS-PFT-09-001), 2009.
[37]
https://agenda.linearcollider.org/getFile.py/access?contribId=3&sessionId=1&re
sId=1&materialId=slides&confId=5037
[38]
Adam, Wolfgang and Frühwirth, R. and Strandlie, Are and Todor, T. Reconstruction
of Electrons with the Gaussian-Sum Filter in the CMS Tracker at the LHC. 2005.
[39]
P. Fayet, Nucl.Phys. B 90, 104 (1975).
[40]
Tracking and Primary Vertex Results in First 7 TeV
Collisions, CMS PAS TRK-10-005(2010),
https://cds.cern.ch/record/1279383/files/TRK-10-005-pas.pdf
[41]
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideMuonId.
electron
[42]
https://twiki.cern.ch/twiki/bin/viewauth/CMS/TWikiTopRefEventSel#Electrons.
[43]
https://twiki.cern.ch/twiki/bin/view/CMS/MultivariateElectronIdentification.
[44]
https://twiki.cern.ch/twiki/bin/view/CMS/CutBasedPhotonID2012
[45]
M. Cacciari, G. P. Salam, and G. Soyez, “The Anti-k(t) jet clustering algorithm”, JHEP
0804 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189
[46]
F. Maltoni and T. Stelzer, “MadEvent: Automatic event generation with MadGraph”,
JHEP 0302 (2003) 027, arXiv:hep-ph/0208156.
[47]
J. Pumplin et al., “New generation of parton distributions with uncertainties from
global QCD analysis”, JHEP 0207 (2002) 012, arXiv:hep-ph/0201195.
[48]
T. Sjo¨ strand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual”, JHEP
0605 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.
[49]
S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with
shower in POWHEG: s-and t-channel contributions,”JHEP 0909(2009) 111, arXiv:
0907.4076 [hep-ph].
[50]
E. Re, “Single-top Wt-channel production matched with parton showers using the
POWHEG method,”Eur.Phys.J. C71(2011) 1547, arXiv: 1009. 2450 [hep-ph].
[51]
S. Agostinelli et al., “Geant4-A Simulation Toolkit,”Nuclear Instruments and
Methods A 506(2003).
[52]
G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for
likelihood-based tests of new physics”, The European Physical Journal C 71 (2011),
no. 2, 1–19, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.