跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃啟賢
Qi-Xian Huang
論文名稱: 以公平性為考量之LTE-A上行訊務排程方法研究
Study of Fairness Based Uplink Scheduler for LTE-A Network
指導教授: 陳彥文
Yen-Wen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: 進階長期演進技術單載波正交頻分多址正交頻分多址多載波正交頻分多址
外文關鍵詞: LTE-Advanced, SC-FDMA, OFDMA, Multi-Cluster-SC-FDMA
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • LTE-A(Long Term Evolution Advanced)是3GPP推出的4G網路主流技術。在無線資源調度方面,由無線資源管理單位(Radio Resource Management, RRM)來實現目標。SC-FDMA(Single-carrier Frequency-Division Multiple Access)具有比OFDMA(Orthogonal Frequency Division Multiple Access)較低之PAPR(Peak to Average Power Ratio),考量手機省電因素,LTE-A的Uplink採用SC-FDMA技術,SC-FDMA傳輸資料量低,所以要求調度傳輸分配給任一用戶之RB(Resource Block)必須是連續的,使得Downlink調度傳輸不能直接應用OFDMA技術在Uplink調度傳輸。
    3GPP於Rel.8上行提出SC-FDMA,為了使UE選擇RB彈性,提昇系統吞吐量(throughput),於Rel.10推出了Multi-Cluster SC-FDMA載波技術,支援一個UE最多可以有2個clustered SC-FDMA之連續性分配,因此本論文參考文獻[1]之文章,引入此關鍵技術,並設計一個權值公式(weight function)來考量其公平性(fairness)及吞吐量。
    最後模擬結果,除了符合規格之連續分配資源的規範,頻寬需求和用戶間通道品質考量之步驟,也加入了Multi-Cluster SC-FDMA技術、權值公式設計,達到系統頻寬資源之公平分配與吞吐量的提昇。

    【關鍵詞】 LTE-Advanced、OFDMA、SC-FDMA、Multi-Cluster SC-FDMA


    LTE-A (Long Term Evolution Advanced) was proposed by 3GPP, is the main technology of 4G Network. The RRM unit would fulfill the work for wireless resource scheduling. LTE-A uplink scheduling uses SC-FDMA technique to allocate continuous RBs for each UE, because it has low data-rate and its PAPR is lower than OFDMA. Lower PAPR can save UE’s battery energy. Therefore, OFDMA technique can not be applied on uplink scheduling transmission.
    3GPP launched the Multi-Cluster Carrier technique in Rel.10 to make UEs can choose a flexible RB to enhance system throughput. Each UE could be assigned up to two continuous RBs allocation. This paper refers to a conference article which posted in VTC Fall [1], and will adopt this key technique to take throughput and fairness into consideration.
    Simulation result finally shows that not only can meet the standard of continuous resource allocation, but take Bandwidth requirement and channel quality into account between UEs, and designs a design weight function with Multi-Cluster technique to achieve fairness of system bandwidth resource and throughput enhancement.

    Keyword : LTE-Advanced、SC-FDMA、OFDMA、Multi-Cluster SC-FDMA

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1研究背景 5 1.2研究動機與目的 5 1.3章節概要 5 第二章 相關背景研究 4 2.1 LTE無線網路規格基本介紹 5 2.1.1 LTE系統架構 5 2.1.2 LTE協定層架構 8 2.1.3 LTE訊框架構 9 2.1.4 Resource Block(RB) 7 2.1.5 LTE之QoS 12 2.2 LTE-A上行傳輸技術介紹 13 2.2.1 SC-FDMA上行傳輸技術 13 2.2.2 Multi-Cluster上行傳輸技術 15 2.2.3上行通道傳輸協定 17 2.3 上行相關演算法介紹 17 2.3.1 Single-tier resource allocation(STRA)演算法 17 2.3.2 First Maximum Expansion (FME)演算法 18 2.3.3 Maximum Throughput (MT)演算法 19 2.3.4 Round Robin (RR)演算法 19 第三章 研究方法 23 3.1系統架構介紹 23 3.2權值設計機制 25 3.3限制頻寬方式 27 3.4加入Rel.10之Multi-clustered SC-FDMA 28 第四章 模擬結果與分析 35 4.1模擬環境介紹 35 4.2模擬結果與分析 36 4.2.1 STRA 未限制頻寬 38 4.2.2 STRA 限制頻寬(1.5Mbps) 43 第五章 結論 59 參考文獻 60 圖目錄 圖1.1-1 OFDMA and SC-FDMA 1 圖1.1-2 Clustered allocation 頻譜示意圖 2 圖2.1-1 TDD / FDD架構 4 圖2.1-2 OFDMA及SC-FDMA傳輸QPSK資料比較 5 圖2.1-3 EPS High Level Architecture 5 圖2.1-4 Evolved Packet System(EPS)系統核心架構 6 圖2.1-5 E-UTRAN架構 7 圖2.1-6 User-Plane Protocol Stack 8 圖2.1-7 Control-Plane Protocol Stack 9 圖2.1-8第一類訊框架構圖 10 圖2.1-9第二類訊框架構圖 10 圖2.1-10 Uplink resource grid 11 圖2.1-11不同頻寬之RB寬度示意圖 12 圖2.2-1不同多工技術PAPR之差異(a)QPSK(b)16QAM 14 圖2.2-2分散式及連續式分配之差異 14 圖2.2-3 L-FDMA與I-FDMA傳輸速度比較 15 圖2.2-4 Rel.10-Multi-Cluster與Rel.8-SC-FDMA分配比較 16 圖2.2-5 Multi-clustered與SC-FDMA之PAPR比較 16 圖2.3-1 STRA分配結果圖 18 圖2.3-2 cell edge throughput分配結果圖 20 圖2.3-3不同機制系統平均throughput分配結果圖 20 圖2.3-4 Throughput performance for 5UEs 21 圖2.3-5 Throughput performance for 10UEs 22 圖2.3-6 Throughput performance for 15UEs 22 圖3.1-1系統架構分析整理圖 23 圖3.1-2 Scenario of LTE uplink operations 24 圖3.3-1加入頻寬上限流程圖 28 圖3.4-1 PUSCH and PUCCH combinations in 3GPP Release 10 30 圖3.4-2加入Multi-Cluster SC-FDMA流程圖 33 圖4.2-1(α= 0) 1-cluster throughput分配 37 圖4.2-2(α= 0.4)1-cluster throughput分配 37 圖4.2-3(α= 1)1-cluster throughput分配 38 圖4.2-4平均一個UE於不同α值1-cluster throughput分配 39 圖4.2-5平均一個UE於不同α值2-cluster throughput分配 39 圖4.2-6不同α值之1-cluster RB利用率 40 圖4.2-7不同α值之2-cluster RB利用率 40 圖4.2-8不同α值於1-cluster平均一個RB之MCS Level 41 圖4.2-9不同α值於2-cluster平均一個RB之MCS Level 41 圖4.2-10不同α值於1-cluster傳輸標準差 42 圖4.2-11不同α值於2-cluster傳輸標準差 43 圖4.2-12 Throughput/UE (1.5Mbps in 1-cluster) 44 圖4.2-13 Throughput/UE (1Mbps in 1-cluster) 45 圖4.2-14 Throughput/UE (0.5Mbps in 1-cluster) 45 圖4.2-15 Throughput/UE (1.5Mbps in 2-cluster) 46 圖4.2-16 Throughput/UE (1Mbps in 2-cluster) 46 圖4.2-17 Throughput/UE (0.5Mbps in 2-cluster) 47 圖4.2-18 RB Utilization (1.5Mbps in 1-cluster) 48 圖4.2-19 RB Utilization (1Mbps in 1-cluster) 48 圖4.2-20 RB Utilization (0.5Mbps in 1-cluster) 49 圖4.2-21 RB Utilization (1.5Mbps in 2-cluster) 49 圖4.2-22 RB Utilization (1Mbps in 2-cluster) 50 圖4.2-23 RB Utilization (0.5Mbps in 2-cluster) 50 圖4.2-24 MCS / RB (1.5Mbps in 1-cluster) 51 圖4.2-25 MCS / RB (1Mbps in 1-cluster) 51 圖4.2-26 MCS / RB (0.5Mbps in 1-cluster) 52 圖4.2-27 MCS / RB (1.5Mbps in 2-cluster) 52 圖4.2-28 MCS / RB (1Mbps in 2-cluster) 53 圖4.2-29 MCS / RB (0.5Mbps in 2-cluster) 53 圖4.2-30 Throughput Standard Deviation (1.5Mbps in 1-cluster) 55 圖4.2-31 Throughput Standard Deviation (1Mbps in 1-cluster) 55 圖4.2-32 Throughput Standard Deviation (0.5Mbps in 1-cluster) 56 圖4.2-33 Throughput Standard Deviation (1.5Mbps in 2-cluster) 56 圖4.2-34 Throughput Standard Deviation (1 Mbps in 2-cluster) 57 圖4.2-35 Throughput Standard Deviation (0.5 Mbps in 2-cluster) 57 表目錄 表2.1-1 LTE系統內部功能介紹 6 表2.1-2 LTE User-Plane協定功能 8 表2.1-3 LTE Control-Plane協定功能 9 表2.1-4 Uplink-downlink allocations 10 表2.1-5 Resource block參數表 12 表2.1-6系統頻寬對應RB個數示意圖 12 表2.1-7 QCI Characteristics 13 表2.2-1上行實體通道功能 17 表2.3-1 The mapping between SNR and MCS 18 表2.3-2 An example of the measured SNR values of each UE in each RB 18 表3.1-1 MCS and SNR 24 表3.2-1 5*9矩陣範例(α = 1) 26 表3.2-2 5*9矩陣範例(α = 0.4) 27 表3.4-1 Resource Block Group (RBG) size 30 表3.4-2 5*9 Multi-Clustered SC-FDMA矩陣之範例 31 表3.1-3 5*9 Multi-Clustered SC-FDMA實作之範例 31 表4.1-1 RB number of Bandwidth 35 表4.1-2 系統模擬參數 35 表4.1-3 Mapping between MCS and RB capacity 36 表4.2-1 模擬分析case分類 36 表4.2-2 模擬結果結論總表 58

    [1] Chang, C. H., Chao, H. L., and Liu, C. L.; “Sum Throughput-Improved Resource Allocation for LTE Uplink Transmission, ” 2011 IEEE Vehicular Technology Conference (VTC Fall.)
    [2] Motorola, “Long Term Evolution(LTE): A Technical Overview, ” Technical White Paper.
    [3] Takehiro Nakamura, 3GPP TSG-RAN chairman NTT DOCOMO, INC.,“ LTE Rel-9 and LTE-Advanced in 3GPP”, May 19, 2009.
    [4] http://www.3gpp.org/technologies/keywords-acronyms/98-lte
    [5] http://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced
    [6] https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma169/1MA169_3e_LTE-Advanced_technology.pdf
    [7] http://www.2cm.com.tw/technologyshow_content.asp?sn=1407290011
    [8] http://www.laroccasolutions.com/140-lte-radio-interface-overview/
    [9] http://www.openepc.net/index.html
    [10] 3GPP TS 36.300 (v10.2.0 Release10), “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network.
    [11] 3GPP TS 36.211 (v9.1.0 Release9), “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation”, April 2010.
    [12] http://www.sharetechnote.com/html/FrameStructure_DL.html
    [13] 3GPP, “Policy and Charging Control Architecture,” TR 23.203, 3rd Generation Partnership Project (3GPP), Mar. 2010.
    [14] Hyung G. Myung; Junsung Lim; David J. Goodman; "Single carrier FDMA for uplink wireless transmission," Vehicular Technology Magazine, IEEE , vol.1, no.3, pp.30-38, Sept. 2006.
    [15] http://www.cs.nccu.edu.tw/~jang/teaching/NextMobCom_files/Adaptive%20QoS%20Scheduling%20for%20OFDMA%20SC-FDMA%20in%20LTE.pdf
    [16] http://www.keysight.com/upload/cmc_upload/All/Introducao.LTE.Evolucao.LTE.A.pdf?&cc=TW&lc=cht
    [17] https://cdn.rohde-schwarz.com/pws/dl_downloads/dl_application/application_notes/1ma169/1MA169_3e_LTE-Advanced_technology.pdf
    [18] Hua Wang; Hung Nguyen; Claudio Rosa; Klaus Pedersen “Uplink multi-cluster scheduling with MU-MIMO for LTE-Advanced with carrier aggregation, ” 2012 IEEE Wireless Communications and Networking Conference (WCNC).
    [19] Moray Rumney BSc, C. Eng, MIET, “3GPP LTE: Introducing Single-Carrier FDMA”, Agilent Measurement Journal, Issue 4, pp.18-27, January 2008.
    [20] http://www.2cm.com.tw/technologyshow_content.asp?sn=1001050009
    [21] 孔翠玉,國立中央大學通訊工程研究所。Tradeoff Design of Radio Resource Scheduling for Power and Spectrum Utilizations in LTE Uplink System,碩士論文,June 2013.
    [22] Hsi-Lu Chao; Chia-Kai Chang; Chia-Lung Liu “A novel channel-aware frequency-domain scheduling in LTE uplink, ” 2013 IEEE Wireless Communications and Networking Conference (WCNC).
    [23] CuiYu Kong; Yen-Wen Chen; I-Hsuan Peng “Referential bounds analysis of uplink radio resource scheduling in LTE network, ” 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC).
    [24] Achraf Kessab; Fatima Zohra Kaddour; Emmanuelle Vivier; Lina Mroueh; Mylene Pischella; Philippe Martins “Gain of multi-resource block allocation and tuning in the uplink of LTE networks” 2012 International Symposium on Wireless Communication Systems (ISWCS).
    [25] Rana E. Ahmed; Hanin M. AlMuhallabi ; “Throughput-fairness tradeoff in LTE uplink scheduling algorithms,” 2016 International Conference on Industrial Informatics and Computer Systems (CIICS).
    [26] https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-015-0329-y
    [27] Hua Wang; Hung Nguyen; Claudio Rosa; Klaus Pedersen; “ Uplink multi-cluster scheduling with MU-MIMO for LTE-Advanced with carrier aggregation ” 2012 IEEE Wireless Communications and Networking Conference (WCNC).
    [28] Akihiko Nishio; Takashi Iwai; Atsushi Matsumoto; Daichi Imamura “ System Evaluation of MU-MIMO and Multi-Cluster Allocation in LTE-Advanced Uplink” 2012 IEEE 75th Vehicular Technology Conference (VTC Spring).

    QR CODE
    :::