| 研究生: |
任維崧 Wei-Sung Jen |
|---|---|
| 論文名稱: |
利用反捲積法反演中壢特高頻雷達空中降水參數 |
| 指導教授: |
朱延祥
Yen-Hsyang Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 反捲積 、反演空中降水參數 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本次研究是利用中壢特高頻(VHF)52MHz雷達以及地面二維雨滴譜儀(Disdrometer)來研究空中降水的情形,可分別得到空中降水粒子的終端速度、回波功率、頻譜寬、大氣回波功率、大氣垂直速度、大氣頻譜寬以及地面降雨率、雨滴粒徑分佈參數。由於降水粒子會對電磁波在大氣中的傳播造成衰減,因此研究空中降水粒子特性便為之重要,尤其是降水粒子在空中的粒徑分佈情形。
過去幾年內,許多研究皆說明了伽瑪雨滴粒徑分佈較符合真實雨滴粒子的分佈狀況,此文透過反捲積(Deconvolution)的方法反演出空中伽瑪雨滴粒徑分佈參數N_0 、μ、Λ,進而得到重要降水參數,如質量均值粒徑(D_m)、質量中值粒徑(D_0)、降雨率(R)等等…。為了驗證反捲積過程能有效地運用在雷達觀測資料上,藉由理論推導來模擬雷達降水回波頻譜及其對應的雨滴粒徑分佈情形,並考慮在不同大小雜訊影響下,反捲積過程的結果與理論值的誤差,可以發現隨著訊雜比的提升,所得到的誤差將隨之減少。
本次觀測的降水事件為2019年6月22日22:10LT至6月23日18:00LT這兩天的降水資料,分別利用傳統的反演方式以及反捲積方法反演空中降水參數D_m 、R並與地面雨滴譜儀量測結果做比較,顯示相對於傳統方式,反捲積過程的結果較趨近於地面雨滴譜儀觀測之結果。接著,依據不同的降水型態來分析所反演的降水參數並與特定時間下雨滴譜儀的資料做比對,計算兩者間的相關係數、方均根差、互相關函數,顯示無論是層狀降水或是對流降水,在時間平移後所得到的結果皆有改善的現象且受到不同大氣垂直速度的影響,使得兩種不同降水型態的時間延遲也有不同的結果。最後,探討降水終端速度與頻譜寬之間的關係,由散佈圖可看出隨著雷達回波的訊雜比提升,所觀測到的散佈型態較類似地面雨滴譜儀量測的結果,故訊雜比的大小為反演結果好壞的重要指標。
The study uses Chung-Li 52MHz VHF radar and two dimensional video disdrometer (2DVD or disdrometer) to investigate precipitation phenomenon in the air. We can obtain precipitation terminal velocity, echo power, spectral width, air velocity, air echo power, air spectral width, rainfall rate and drop size distribution (DSD) from each apparatus. The precipitation particles will attenuate electromagnetic wave propagation in the air, so the study of their characteristic is very important, especially for DSD in the air.
In the past few years, many researches suggested that Gamma DSD was the closest to real DSD. The study through the deconvolution method to retrieve Gamma DSD parameters N_0 、μ、Λ and further important parameters such as mass-weighted averaged diameter (D_m), median volume diameter (D_0) and rainfall rate (R) etc. in the air. We simulate radar precipitation spectrums and corresponding DSDs through the theoretical formula in order to confirm the deconvolution method can efficiently be used in radar observed data, and then consider the errors between deconvolution results and theoretical values with different signal-to-noise ratio (SNR). The results show the errors reduce while SNR increase.
The data in this study is the precipitation events from June 22th 22:10LT to June 23th 18:00LT, 2019. We compare precipitation parameters D_m and R retrieved by traditional method and deconvolution process with ground-based 2DVD and find that deconvolution method is more closer to the 2DVD observation then tradition does. Next, according to precipitation characteristics, we separate the precipitation events into two categories, stratiform and convective precipitations. The statistical parameters, i.e., correlation coefficient, root-mean-square error and cross correlation function are calculated to compare radar retrieved parameters with 2DVD. Finally, both categories improve their results after the time shift. However, due to the different air velocity, the time delay will also be different. Last, we investigate the relationship between precipitation terminal velocity and its spectral width. The scatter diagrams show that the performances become closer to the pattern of disdrometer’s results when SNR increase, so the level of SNR be an important index when retrieving precipitation parameters in the air.
(1) Atlas, D., R. C. Srivastava, and R. S. Sekhon, Doppler radar characteristic of precipitation at vertical incidence, Rev. Geophys ., 11, 1-35, 1973.
(2) Batten, L. J., Radar observations of the atmosphere, pp324, University of Chicago Press, Chicago, Ⅲ, 1973.
(3) Balsley, B. B. and K. S. Gage, The MST radar technique: Potential for middle atmospheric studies, Pure and Applied Geophys., 118, 452-493, 1980.
(4) Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, M. Schoenhuber, Raindrop size distribution in different climatic egimes from disdrometer and dual-polarized radar, J. Atmos. Oceanic Technol., 60, 354-365, 2003.j
(5) Chen, C.H., C.L. Su., J.H. Chen., Y. H.Chu, Vertical wind effect on slope and shape parameters of gamma drop size distribution, manuscript submitted for publication, J. Atmos. Oceanic Technol., 37, 243-262, 2020.
(6) Chu, Y. H., and C. H. Lin, The severe depletion of turbulent echo power in association with precipitation observed by using Chung-Li VHF Radar, Radio Sci., 29, 1311-1320, 1994.
(7) Chu, Y. H., and C. L. Su, An investigation of the Slope-Shape Relation for Gamma Raindrop Size Distribution, J. Appl. Meteor., 47, 2531-2544, 2008.
(8) Chu, Y. H., J. K. Chao, C. H. Liu, and J. Röttger, Aspect sensitivity at tropospheric heights measured with vertically pointed beam of the Chung-Li VHF radar, Radio Sci., 25, 539-550, 1990.
(9) Chu, Y. H., and L. P. Chian, The investigation of the atmospheric precipitations by using Chung-Li VHF Radar, Radio Sci., 26, 717-729, 1991.
(10) Chu, Y. H., T. S. Hsu, L. H. Chen, J. K. Chao, C. H. Liu, and J. Röttger, A study of the characteristics of VHF radar echo power in the Taiwan area, Radio Sci., 25, 527-538, 1990.
(11) Chu, Y. H., and J. S. Song, The observation of precipitation associated with cold front using VHF wind profiler and ground-based optical raingauge, Journal of geophysical research, 103, 11401-11409, 1998.
(12) Cilson, P. B., C. W. Ulbrich, M. F. Larsen, P. Perillat, and J. E. Keener, Observation of a tropical thunderstorm using a vertically pointing, dual-frequency, collinear beam Doppler radar, J. Atmos. Oceanic Technol., 10, 663-673, 1993.
(13) Fukao, S., K. Lakasugi, T. Sato, S. Morimoto, T. Tsuda, I. Hirota, I. Ximura, and S. Kato, Simultaneous observation of precipitation atmosphere by VHF and C/Ku Band Radars, Radio Sci., 20, 622-630, 1985.
(14) Friend, A. W., Theory and practice of tropospheric sounding by radar, Proc. IEEE., 37, 116-138, 1949.
(15) Gunn, R. and G. D. Kinzer, The terminal velocity of fall for water droplets in stagnant air, J. Meteor, 6, 243-248, 1949.
(16) Gage, K. S., and B. B. Balsley, On the scattering and reflection mechanisms contributing to clear-air radar echoes from the troposphere, stratosphere, and mesosphere, Radio Sci., 15, 243-257, 1980.
(17) Gage, K.S., W. L. Ecklund, and B. B. Balsley, A modified Fresnal scattering model for the parameterization of Fresnel returns, Radio Sci., 20, 1493-1501, 1985.
(18) Gossard, E., Measuring drop-size distributions in clouds with a clear-air-sensing Doppler radar, J. Atmos. Oceanic Technol., 5, 640-649, 1988.
(19) Houze, R. A., Stratiform precipitation in regions of convection: A meteorological paradox?, Bulletin of the American Meteorological Society., 78, 2179-2196, 1997.
(20) Kozu, T., and K. Nakamura, Rainfall parameter estimation from dual-radar measurement combining reflectivity profile and path-integrated attenuation, J. Atmos. Oceanic Technol., 8, 259-270, 1991.
(21) Kruger, A., and W. F. Krajewski, Two-dimensional video disdrometer: a description, J. Atmos. Oceanic Technol., 19, 602-616, 2001.
(22) Larsen, M. F., and J. Röttger, Observation of thunderstorm reflectivities and Doppler velocities measured at VHF and UHF, J. Atmos. Oceanic Technol., 4, 151-159, 1987.
(23) Lin, T. H., Y. H. Chu, C. L. SU, and K. F. Yang, Radar phase offset estimate using ionospheric field-aligned irregularities and aircraft, Terr. Atmos. Ocean. Sci., 30, 803-820, 2019.
(24) Lucas, C., A. D. Mackinnon, R. A. Vincent, and P. T. May, Raindrop size distribution retrievals from a VHF boundary layer profiler, J. Atmos. Oceanic Technol., 21, 45-60, 2003.
(25) Marshall, J. S., and W. M. Palmer, The distribution of raindrops with size, J. Meteor., 5, 165-166, 1948.
(26) Ottersten, H., Radar backscattering from the turbulent clear atmosphere, Radio Sci., 4, 1251-1255, 1969.
(27) Rajopadhyaya, D. K., P. T. May, and R. A. Vincent, A general approach to the retrieval of raindrop size distributions from wind profiler Doppler spectra: modeling results, J. Atmos. Oceanic Technol., 10, 710-717, 1993.
(28) Raupach, T. H., A. Berne, Correction of raindrop size distributions measured by Parsivel disdrometer, using a two-dimensional video disdrometer as a reference, Atmos. Meas. Tech., 8, 343-365, 2015
(29) Riddle, A. C., A minimum threshold for wind profiler signal-to-noise ratios, J. Atmos. Oceanic Technol., 29, 889-895, 2012.
(30) Schafer, R., S. Avery, P. May, D. Rajopadhyaya, and C. Williams, Estimation of rainfall drop size distribution from dual-frequency wind profiler spectra using deconvolution and a nonlinear least squares fitting technique, J. Atmos. Oceanic Technol., 19, 864-873, 2002.
(31) Schönhuber, M., About interation of precipitation and electromagnetic waves, Institute of Communications and Wave Propagation, Technical University, Graz, doctoral thesis.
(32) Su, C. L., and Y. H. Chu, Analysis of terminal velocity and VHF backscatter of precipitation particles using Chung-Li VHF radar combined with ground-based disdrometer, TAO, 18, 1, 97-116, 2007
(33) Su, C. L., Y. H. Chu, and C. Y. Chen, Analyzing the Relationship between Terminal Velocity of Raindrops and VHF Backscatter from Precipitation, TAO, 15, 4, 629-645, 2004.
(34) Su, C. L., Y. H. Chu, and I. Y. Lo, Negative correlation between terminal velocity and VHF radar reflectivity: observation and plausible explanation, Ann. Geophys., 27, 1631-1642, 2009.
(35) Tatarskii, V. I., Wave propagation in a turbulent media, pp285., McGraw-Hill, New York, 1961.
(36) Wakasugi, K., A. Mizutani, M. Masaru, S. Fukao, and S. Kato, A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra, J. Atmos. Oceanic Technol., 3, 623-629, 1986.
(37) Wait, J. R., Electromagnetic waves in stratified medis, Pergamon Press, New York, 305, 1962.
(38) Williams, C. R., K. S. Gage, and W. L. Ecklund, Classification of precipitating clouds in the tropics using 915-MHz wind profilers, J. Atmos. Oceanic Technol., 12, 996-1012, 1995.
(39) Williams, C. R., Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations, Radio Sci., 37, 2002.
(40) Williams, C. R., and K. S. Gage, Raindrop size distribution variability estimated using ensemble statistics, Ann. Geophys., 27, 555-567, 2009
(41) Moisseev, D., and V. Chandrasekar, Examination of the μ-Λ relation suggested for drop size distribution parameters, J. Atmos. Oceanic Technol., 24, 847-855, 2007.
(42) Yang, M. R., and R. A. Houze, Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity, Monthly Weather Review, 123, 3175-31193, 1995.
(43) Yeh, K. C., and C. H. Liu, Theory of ionosphere waves, Academic Press, New York, 464, 1974.
(44) Zhang, G., J. Vivekanandan, E. Brandes, R. Meneghini, and T. Kozu, The shape-slope relation in observed gamma raindrop size distribution: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 1106-1119, 2003.
(45) 朱延祥,MST雷達回波機制的研究,博士論文,國立中央大學,1998。
(46) 朱延祥,中壢VHF雷達遙測大氣原理與應用。
(47) 陳孟遠,利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係,碩士論文,國立中央大學,2000 。
(48) 陳朝信,利用中壢特高頻雷達研究雨滴粒徑分佈,碩士論文,國立中央大學,2009。
(49) 陳睿祥,利用中壢特高頻雷達觀測潭美颱風的降雨現象,碩士論文,國立中央大學,2014。
(50) 陳昭宇,多頻段剖風儀雷達觀測結果之比對與分析,碩士論文,國立中央大學,2019。
(51) 林廷翰,中壢特高頻雷達系統初始相位偏差估計與應用,博士論文,國立中央大學,2019。