| 研究生: |
賴明姍 Ming-Shan Lai |
|---|---|
| 論文名稱: |
調適性小波量化調變音訊浮水印系統 Audio Watermarking System Based on Adaptive Wavelet Quantization Index Modulation Technique |
| 指導教授: |
張寶基
Pao-Chi Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 盲擷取 、強健性浮水印 、量化調變 、小波封包 |
| 外文關鍵詞: | wavelet packet, blind detection, QIM, robust watermarking |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以小波封包 (Wavelet Packet) 的分頻方式,將樂音訊號經由濾波器群組分成29個次頻帶,藉由人耳聲學模型 (Psychoacoustic Model) 找出適合嵌入的頻段,之後使用小波量化調變的方法進行嵌入的動作,此方法並無傳統做法中對原始音訊的需求,可以省去原始音訊的儲存空間。
針對以音框為基礎(Frame-based)之嵌入架構,如果每個音框皆使用不同的步階大小,將會造成龐大的資訊藏量。為了滿足最低可接受之音訊品質,由統計結果發現小波係數的L1 norm與步階大小成線性關係,故我們提出調適性的步階來符合不同樂音的需求。此步階大小可同時由嵌入端及萃取端計算而得,如此則不需額外的儲存空間來記錄步階大小。
本音訊浮水印技術可以提供平均每個音框大約4個位元的浮水印容量,由主觀的測試中知道,嵌入後之主訊號音質與原音質相近。由客觀測試知道,嵌入浮水印之樂音和原始樂音的訊雜比維持在20dB以上。且根據實驗結果顯示經一般的數位訊號處理,或欲藉由對樂音訊號的攻擊,如MP3音訊壓縮64K bps以上、重新取樣、對取樣點重新量化、加入雜訊等處理,正規化相關性(Normalized Correlation)值皆在0.8以上,達到均可辨識之程度,可見其強健性。
In this paper, we propose a robust audio watermarking technique which adopts the wavelet QIM method with adaptive step sizes for blind watermark extraction. Since wavelet transform offers both temporal and frequency resolutions, it is suitable for audio signal processing. The original audio signal is first segmented and divided into 29 subbands via wavelet packet decomposition. The bandwidth allocation of the subband decomposition structure is close to the critical band structure of human auditory system. According to Psychoacoustic Model, middle-low subbands are chosen for watermark embedding.
The adaptive step size technique is applied to audio signals with different characteristics based on the criterion that SNR must be maintained above 20 dB so that it is robust and transparent. We formulate the step size of each frame to be proportional to the magnitude of the audio signal. No side information on the step sizes need to be transmitted.
We analyze the performance of the proposed algorithms in terms of data SNR and Normalized Correlation (NC). The experimental results show that the embedding capacity is around 4 bits/frame and the watermark is robust against MP3 compression at 64 Kbps, resampling, requantization, and Gaussian noise corruption. The NC values after attacks are all above 0.8 in the experiments so that the copyright can easily be distinguished.
[1] http://www.cert.org.tw/document/column/index.php.
[2]林禎吉,賴溪松“漫談數位浮水印技術,”資訊安全通訊,第四卷, 第三期,民國87年6月。
[3]黃國峰,張真誠,黃明祥“漫談數位浮水印技術,”資訊安全通訊,第五卷,第四期,民國88年9月。
[4]C. Xu, J. Wu, and Q. Sun, "Digital audio watermarking and its application in multimedia database," in Proc. of the 15th Int. Sym. on Signal Processing and Its Applications(ISSPA 1999), Brisbane, Australia, Aug.22-25, 1999, pp.91-94.
[5]N. S. and K. A, "Wavelet-Based Audio Watermarking Using Adaptive Tabu Search," in Proc. of Int. Sym. on Wireless Pervasive Computing (ISWPC 2006), Thailand, Jan.16-18, 2006, pp.1- 5.
[6]G. Luo, "Ultra low delay wavelet audio coding with low complexity for real time wireless transmission," in Proc. of Int. Sym. on Intelligent Signal Processing and Communication Systems, Hong Kong, China, Dec.13- 16, 2005, pp.741-744.
[7]C.-C. Lin, S.-H. Chen, T.-K. Truong, and Y. Chang, "Audio Classification and Categorization Based on Wavelets and Support Vector Machine," IEEE Trans. on Speech and Audio Processing, vol. 13, no.5, pp.644-651, Sep. 2005.
[8]C.-M. Huang, Key-based audio watermarking system using wavelet packet decomposition, Master thesis, Elect. Eng. Dept., Univ. of National Central, Taoyuan, Taiwan, 2002.
[9]B. Chen and G. W. Wornell, "Quantization index modulation: A class of provably good methods for digital watermarking and information embedding," IEEE Trans. Inf. Theory, vol.47, no.4, pp.1423-1443, May 2001.
[10]T.-T. Lu, Featured-based block-wise processing applied to image and video compression and watermarking systems, Ph.D. dissertation, Elect. Eng. Dept., Univ. of National Central, Taoyuan, Taiwan, 2003.
[11]P. Bao and X. Ma, "Image adaptive watermarking using wavelet domain singular value decomposition," IEEE Trans. on Circuits and Systems for Video Technology, vol.15 , No. 1, pp.96-102, Jan. 2005.
[12]S. Katzenbeisser and F. A. P. Petitcolas, Information Hiding Techniques for Steganography and Digital Watermarking, Artech House, Inc., Canton Street, Norwood MA, 2000.
[13]IJ Cox, ML Miller and JA Bloom, "Watermarking applications and their properties," in Proc. of IEEE Int. Conf. on Inf. Technology : Coding and Computing (ITCC 2000), Las Vegas, USA, Mar. 27-29, 2000, pp.6-10.
[14]M. Arnold, "Audio watermarking: Features, applications and algorithms," in Proc. of IEEE Int. Conf. on Multimedia and Expo (ICME 2000), San Diego, California, Jul.30-Aug.2, 2000, pp.1013- 1016.
[15]W. Bender, D. Gruhl, N. Morimoto, and A. Lu, "Techniques for data hiding," IBM Systems Journal, vol.35, no. 3-4, pp.313-336, 1996.
[16]L. Boney, A. H. Tewfik, and K. N. Hamdy, "Digital watermarks for audio signals," in Proc. of Int. Conf. on Multimedia Computing and Systems, , Hiroshima, Japan, Jun.17-23, 1996, pp. 473-480.
[17]D. Gruhl, A. Lu and W. Bender, "Echo hiding," in Proc. of the 1st Int. Workshop on Inf. Hiding, Cambridge, UK, May30-Jun.1, 1996, 295- 315.
[18]J. F. Tilki and A. A. Beex, "Encoding a hidden auxiliary channel onto a digital audio signal using psychoacoustic masking," in Proc. of IEEE Southeastcon, Blacksburg, VA, USA, Apr.12-14, 1997, pp.331- 333.
[19]Y. Wang, "A new watermarking method of digital audio content for copyright protection," in Proc. of the 4th Int. Conf. on signal processing(ICSP 1998), Beijing, China, vol.2, Oct.12-16, 1998, pp.1420-1423.
[20]M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, "Image coding using vector quantization in the wavelet transform domain," in Proc. of the 2nd Biennial Acoustics, Speech, and Signal Processing Conf., Albuquerque, New Mexico, Apr.3-6, 1990, pp.2297-2300.
[21]C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to wavelets and wavelet Transforms - A primer, New Jersey, Prentice-Hall, 1998.
[22]G. Strang and T. Nguyen, Wavelets and filter banks, Wellesley- Cambridge Press, Boston, 1996.
[23]P. M. Bentley and J. T. E. McDonnell, "Wavelet Transforms: an. Introduction", IEE Electronics and Communication Engineering Journal, vol. 6, no. 4, pp.175-186, 1994.
[24]A. N. Akansu, and M. J. T. Smith, Subband and wavelet transforms : design and applications, Kluwer Academic, Boston, 1996
[25]P. E. Kudumakis and M. B. Sandler, "Wavelet packet based scalable audio coding," in Proc. of the 7th Int. Sym. on Circuits and Systems(ISCAS 1996), Atlanta, vol.2, May12-15, 1996, pp.41-44.
[26]W. K. Dobson, J. J. Yang, K. J. Smart, and K. F. Guo, "High quality low complexity scalable wavelet audio coding," in Pro. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 1997), Munich, Apr.21-24, 1997, pp.327-330.
[27]O. Rioul and M. Vetterli, "Wavelets and signal processing," IEEE Signal Process. Mag., vol. 8, pp. 14-38, Oct. 1991.
[28]C. C. Todd and K. J. Gundry, " A digital audio system for broadcast and prerecorded media," in Audio Engineering Society Electronic Library, Feb. 1984.
[29]ISO/IEC 11172-3 : " Information technology - Coding of moving pictures and associated audio for digital storage media at up to about 1.5 M bits/s - Part 3: Audio (MPEG-1) ," 1992.
[30]S. Wu, J. Huang, D. Huang, and Y. Q. Shi, "Self-synchronized audio watermark in DWT domain," in Proc. of IEEE Int. Symposium on Circuits and Systems, Vancouver, Canada, May23-26, 2004, pp.23- 26.
[31]ITU-T Recommendation on P.800," Methods for subjective determi- nation of transmission quality," Aug. 1996.
[32]http://psplab.csie.nctu.edu.tw/invboard2_0/ipb.php.