| 研究生: |
黃耀平 Yao-Ping Huang |
|---|---|
| 論文名稱: | A Nonlinearly Preconditioned Full-space Lagrange-Newton Method for Low Thrust Orbit Transfer Optimization Problems |
| 指導教授: |
黃楓南
Feng-Nan Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 非線性 |
| 外文關鍵詞: | Nonlinearly |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在太空任務中電力推進系統被稱為低推力推進系統。最近,在大多數的太空
任務中傳統化學推進系統都改變為電力推進系統,因此低推力問題變得更加普
遍。而低推力軌道轉移的優化和設計一直是太空探索任務中的難題。針對這些問
題, 我們提出了A Nonlinearly Preconditioned Full-space Lagrange-Newton Method
該方法一種基於右非線性預處理技術分別通過替換非線性函數或改變未知數來
處理非線性,但它需要在原始系統的子集上進行內部迭代,這導致每步的額外成
本。因此,為了有效地提高效率,不需要在每次牛頓迭代上調用非線性預處理,
尤其是當近似解接近收斂時。數值計算驗證了該方法的有效性。
iv
In space missions, the low-thrust propulsion system is another name for the
electrically-powered spacecraft propulsion system. Recently, traditional chemical
propulsion system change to the electrically-powered spacecraft propulsion system
in the most space missions, so the low-thrust problems become more common. The
optimization and design of low-thrust orbit transfer always have been a difficult
problem in space exploration missions. For these problems, we propose a nonlinearly
preconditioned Full-space Lagrange-Newton Method. The method is kind of
the right nonlinear preconditioning techniques deals with nonlinearities by changing
unknowns or replacing nonlinear functions, respectively. Owing to it needs inner
iterations working on subsets of the original system, which lead to additional cost
per step. Therefore, for the purpose of effectively improve efficiency nonlinear preconditioner
require not to be invoked on every Newton iteration, especially when
the approximate solution close to the typical solution. The numerical result verifies
the effectiveness of the method.
[1] J. T. Betts. Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming. SIAM, 2010.
[2] Sven Schäff. Low-thrust multi-revolution orbit transfers. In Space Engineering,
pages 337–367. Springer, 2016.
[3] T. Haberkorn, P. Martinon, and J. Gergaud. Low thrust minimum-fuel orbital
transfer: a homotopic approach. Journal of Guidance, Control, and Dynamics,
27:1046–1060, 2004.
[4] S. Lee, P. von Ailmen, W. Fink, A.F. Petropoulos, and R. J. Terrile. Design and
optimization of low-thrust orbit transfers. In 2005 IEEE Aerospace Conference,
pages 855–869. IEEE, 2005.
[5] J.C Bastante, A Caramagno, L.F Peñı́n, M Belló-Mora, and J Rodrı́guez-
Canabal. Low thrust transfer optimisation of satellites formations to heliocentric
earth trailing orbits through a gradient restoration algorithm. 2004.
[6] G. A. Rauwolf and V. L. Coverstone-Carroll. Near-optimal low-thrust orbit
transfers generated by a genetic algorithm. Journal of Spacecraft and Rockets,
33:859–862, 1996.
[7] J. T. Betts. Survey of numerical methods for trajectory optimization. Journal
of Guidance Control and Dynamics, 21(2):193–207, 1998.
[8] D. G. Luenberger, Y. Ye, et al. Linear and Nonlinear Programming, volume 2.
Springer, 1984.
[9] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.
[10] J. T. Betts. Very low-thrust trajectory optimization using a direct SQP method.
Journal of Computational and Applied Mathematics, 120:27–40, 2000.
[11] D. G. Hull. Optimal Control Theory for Applications. Springer-Verlag, 2003.