| 研究生: |
古芳鳴 Fang-Ming Gu |
|---|---|
| 論文名稱: |
吸積毫秒脈衝星MAXI J0911-655之不同能量 間脈衝相位關係之研究 Energy Dependent Pulse Arrival Times of Accreting Millisecond X-ray Pulsar: MAXI J0911-655 |
| 指導教授: |
周翊
Yi Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 天文研究所 Graduate Institute of Astronomy |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 低質量X光雙星 、吸積毫秒脈衝星 、MAXI J0911-655 、低能延遲 |
| 外文關鍵詞: | Low Mass X-ray Binary, Accreting Millisecond X-ray Pulsar,, MAXI J0911-655, Soft Lag |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
MAXI J0911-655 (Swift J0911.9-6452)是2016年在球狀星團NGC 2808中被發現的吸積毫秒脈衝星,脈衝周期約為2.94毫秒。在首度被發現後,許多太空X光望遠鏡皆有對此光源觀測,其中包含Swift、INTEGER、Chandra、XMM-Newton及 NuSTAR。其中因為XMM-Newton及NuSTAR有很好的時間解析度及較大的有效集光面積,所以在本論文中將利用這二個望遠鏡的觀測資料進行分析。
本論文的研究目標是要探討不同能量之脈衝抵達時間的變化。為了比較脈衝抵達時間,我們需要透過精確的軌道與自轉參數,獲得不同能量的精確脈衝波形。我們藉由脈衝抵達時間延遲的方法,將先前發表的已知參數確認並修正至更準確。接著依能量將光子區分為數個能帶後,利用本研究獲得的參數疊合不同能帶獲得疊合光變曲線,並透過線性擬合取得脈衝波形。每個能帶與最低能帶的脈衝波形透過互相關算得之間的相位差,藉此比較不同能量的脈衝抵達時間變化。
我們透過XMM-Newton及NuSTAR的觀測資料,發現MAXI J0911-655在能量0.3到78 keV間,有高達0.24個相位(~700 μs)的低能延遲現象。根據二分量模型,在都卜勒增亮的影響下,康普頓分量與黑體輻射分量之間的角度分布範圍差別,將造成了觀測到的低能延遲現象。在本研究中,將根據低能延遲的變化討論不同的爆發時間下,熱點與吸積衝擊層的改變狀況。
MAXI J0911-655 (Swift J0911.9-6452), an accreting millisecond X-ray pulsar located in globular cluster NGC 2808, was discovered in 2016 with a pulsation period of 2.94 ms. The follow-up observations were made by Swift, INTEGER, Chandra, XMM-Newton and NuSTAR. Our analysis based on the observation data of XMM-Newton and NuSTAR owing to their better time resolution and larger effective area.
In this study, we attempted to detect the energy dependent pulse arrival time lags, which have been seen in other AMXPs. To obtain the correct pulse profile, precise orbital and spin parameters are essential. We first applied the orbital and spin parameters that yielded by previous study and then refined them using pulse arrival time delay technique. These photons were further divided into several energy bands and then folded with the best orbital and spin parameters to make the pulse profiles of these bands. The pulse arrival time lags relative to the softest energy band were evaluated through cross correlation of the best fitted pulse profiles.
We found the soft lags could be up to 0.24 cycle (~700 μs) in the energy range of 0.3 to 78 keV by XMM-Newton and NuSTAR observations. According to the two-component model, by the influence of Doppler boosting, the different angular distribution between Comptonized (fan-like) and blackbody (pen-like) components is an important reason to cause the soft lag. In this study, we tried to discussion the hotspot and accretion shock change for different outburst time by soft lag magnitudes.
1. Alpar, M. A., Cheng, A. F., Ruderman, M. A., & Shaham, J. 1982, Natur, 300, 728
2. Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M., & Goss, W. M. 1982, Natur, 300, 615
3. Chou, Y., Chung, Y., Hu, C.-P., & Yang, T.-C. 2008, ApJ, 678, 1316
4. Cui, W., Morgan, E., & Titarchuk, L. 1998, ApJ, 504, L27
5. De Falco, V., Kuiper, L., Bozzo, E., et al. 2017, A&A, 603, A16
6. Ebrero, J., XMM-Newton Users Handbook, Issue 2.16, ESA: XMM-Newton SOC, 2018
7. Falanga, M., & Titarchuk, L. 2007, ApJ, 661, 1084
8. Falanga, M., Kuiper, L., Poutanen, J., et al. 2005, A&A, 444, 15
9. Falanga, M., Kuiper, L., Poutanen, J., et al. 2011, A&A, 529, A68
10. Falanga, M., Kuiper, L., Poutanen, J., et al. 2012, A&A, 545, A26
11. Galloway, D. K., Morgan, E. H., Krauss, M. I., Kaaret, P., & Chakrabarty, D. 2007, ApJ, 654, L73
12. Gierliński, M., & Poutanen, J. 2005, MNRAS, 359, 1261
13. Gierliński, M., Done, C., & Barret, D. 2002, MNRAS, 331, 141
14. Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Natur, 217, 709
15. Ibragimov, A., Kajava, J. J. E., & Poutanen, J. 2011, MNRAS, 415, 1864
16. Ibragimov, A., & Poutanen, J. 2009, MNRAS, 400, 492
17. Kennea, J. A., Evans, P. A., Beardmore, A. P., et al. 2016, ATel, 8884, 1
18. Manchester, R. N. 2017, JApA, 38, 42
19. NuSTAR SOC, NuSTAR Observatory Guide, Version 3.2, 2016
20. Papitto, A., Ferrigno, C., Bozzo, E., et al. 2013, Nature, 501, 517
21. Patruno, A., Altamirano, D., Hessels, J. W. T., et al. 2009, ApJ, 690, 1856
22. Poutanen, J. 2004, in X-ray Timing 2003: Rossi and Beyond, ed. P. Kaaret, F. K. Lamb, & J. H. Swank (Melville, NY: AIP), 228
23. Poutanen, J., & Gierliński, M. 2003, MNRAS, 343, 1301
24. Radhakrishnan, V., & Srinivasan, G. 1982, CSci, 51, 1096
25. Rappaport, S. A., Fregeau, J. M., & Spruit, H. 2004, ApJ, 606, 436
26. Sanna, A., Papitto, A., Burderi1, L., et al. 2017, A&A, 598, A34
27. Serino, M., Tanaka, K., Negoro, H., et al. 2016, ATel, 8872, 1
28. Seward, F. D., Charles, P. A. 2010, Exploring the X-ray Universe (Cambridge University Press), 2nd, 174
29. Tauris, T. M., & van den Heuvel, E. P. J. 2006, in Compact Stellar X-ray Sources, ed. W. H. G. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press), 623
30. Tudor, V., Bahramian, A., & Sivako , G., et al. 2016, ATel, 8914, 1
31. Wijnands, R., & van der Klis, M. 1998, Natur, 394, 344
32. 蔡兆陽,「長期監測吸積驅動毫秒波霎SAX J1808.4-3658 之時變性質」,國立中央大學,碩士論文,民國95年
33. 鄭寶玲,「吸積毫秒脈衝星 XTE J0929-314 之不同能量 間脈衝相位關係之研究」,國立中央大學,碩士論文,民國98年
34. 鍾怡音,「吸積驅動毫秒脈衝星 XTE J1814-338 之軌道參數及不同能量間相位延遲之研究」,國立中央大學,碩士論文,民國96年