跳到主要內容

簡易檢索 / 詳目顯示

研究生: 古芳鳴
Fang-Ming Gu
論文名稱: 吸積毫秒脈衝星MAXI J0911-655之不同能量 間脈衝相位關係之研究
Energy Dependent Pulse Arrival Times of Accreting Millisecond X-ray Pulsar: MAXI J0911-655
指導教授: 周翊
Yi Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 83
中文關鍵詞: 低質量X光雙星吸積毫秒脈衝星MAXI J0911-655低能延遲
外文關鍵詞: Low Mass X-ray Binary, Accreting Millisecond X-ray Pulsar,, MAXI J0911-655, Soft Lag
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MAXI J0911-655 (Swift J0911.9-6452)是2016年在球狀星團NGC 2808中被發現的吸積毫秒脈衝星,脈衝周期約為2.94毫秒。在首度被發現後,許多太空X光望遠鏡皆有對此光源觀測,其中包含Swift、INTEGER、Chandra、XMM-Newton及 NuSTAR。其中因為XMM-Newton及NuSTAR有很好的時間解析度及較大的有效集光面積,所以在本論文中將利用這二個望遠鏡的觀測資料進行分析。
    本論文的研究目標是要探討不同能量之脈衝抵達時間的變化。為了比較脈衝抵達時間,我們需要透過精確的軌道與自轉參數,獲得不同能量的精確脈衝波形。我們藉由脈衝抵達時間延遲的方法,將先前發表的已知參數確認並修正至更準確。接著依能量將光子區分為數個能帶後,利用本研究獲得的參數疊合不同能帶獲得疊合光變曲線,並透過線性擬合取得脈衝波形。每個能帶與最低能帶的脈衝波形透過互相關算得之間的相位差,藉此比較不同能量的脈衝抵達時間變化。
    我們透過XMM-Newton及NuSTAR的觀測資料,發現MAXI J0911-655在能量0.3到78 keV間,有高達0.24個相位(~700 μs)的低能延遲現象。根據二分量模型,在都卜勒增亮的影響下,康普頓分量與黑體輻射分量之間的角度分布範圍差別,將造成了觀測到的低能延遲現象。在本研究中,將根據低能延遲的變化討論不同的爆發時間下,熱點與吸積衝擊層的改變狀況。


    MAXI J0911-655 (Swift J0911.9-6452), an accreting millisecond X-ray pulsar located in globular cluster NGC 2808, was discovered in 2016 with a pulsation period of 2.94 ms. The follow-up observations were made by Swift, INTEGER, Chandra, XMM-Newton and NuSTAR. Our analysis based on the observation data of XMM-Newton and NuSTAR owing to their better time resolution and larger effective area.
    In this study, we attempted to detect the energy dependent pulse arrival time lags, which have been seen in other AMXPs. To obtain the correct pulse profile, precise orbital and spin parameters are essential. We first applied the orbital and spin parameters that yielded by previous study and then refined them using pulse arrival time delay technique. These photons were further divided into several energy bands and then folded with the best orbital and spin parameters to make the pulse profiles of these bands. The pulse arrival time lags relative to the softest energy band were evaluated through cross correlation of the best fitted pulse profiles.
    We found the soft lags could be up to 0.24 cycle (~700 μs) in the energy range of 0.3 to 78 keV by XMM-Newton and NuSTAR observations. According to the two-component model, by the influence of Doppler boosting, the different angular distribution between Comptonized (fan-like) and blackbody (pen-like) components is an important reason to cause the soft lag. In this study, we tried to discussion the hotspot and accretion shock change for different outburst time by soft lag magnitudes.

    摘要 ................................ ................................ ................................ ................................ ............ I Abstract ................................ ................................ ................................ ................................ ..... II 致謝 ................................ ................................ ................................ ................................ .......... III 目錄 ................................ ................................ ................................ ................................ ........... V 圖目錄 ................................ ................................ ................................ ................................ ... VIII 表目錄 ................................ ................................ ................................ ................................ ..... XI 第一章、 緒論 (Introduction) ................................ ................................ ................................ . 1 1.1 X光雙星系統 光雙星系統 光雙星系統 (X-ray Binary) ................................ ................................ .......................... 2 1.1.1 高質量 X光雙星 光雙星 (High Mass X-ray Binary, HMXB)................................ ..................... 2 1.1.2 低質量 X光雙星 光雙星 (Low Mass X-ray Binary, LMXB) ................................ ...................... 3 1.1.3 軟 X光暫現星 光暫現星 (Soft X-ray transients, SXTs) ................................ ................................ 4 1.2 脈衝星 (Pulsar) ................................ ................................ ................................ ................. 5 1.2.1 無線電毫秒脈衝星 無線電毫秒脈衝星 無線電毫秒脈衝星 (Radio Millisecond Pulsar) ................................ .............................. 6 1.2.2 吸積毫秒脈衝星 吸積毫秒脈衝星 (Accreting Millisecond X-ray Pulsar) ................................ .................. 6 1.3 不同能量的脈衝變化 不同能量的脈衝變化 不同能量的脈衝變化 (Energy Dependent Pulse Profile)................................ .............. 10 1.3.1 二分量模型 二分量模型 (Two-component model) ................................ ................................ ............ 11 1.3.2 康普頓模型 康普頓模型 (Comptonization model) ................................ ................................ .......... 13 1.4 MAXI J0911-655 ................................ ................................ ................................ ............. 15 1.5 論文簡述 (Outline of This Thesis) ................................ ................................ ................. 16 第二章、 觀測與資料處理 觀測與資料處理 (Observations and Data Reduction) ................................ ......... 17 2.1 XMM-Newton ................................ ................................ ................................ ................. 18 2.1.1 XMM-Newton簡介 (Introduction of XMM-Newtom) ................................ .................. 18 2.1.2 X光望遠鏡及 光望遠鏡及 光望遠鏡及 EPICs (X-ray Telescope and EPICs) ................................ ....................... 20 2.1.3 觀測資料處理 觀測資料處理 (Data Reduction) ................................ ................................ .................... 23 2.2 NuSTAR ................................ ................................ ................................ .......................... 26 2.2.1 NuSTAR簡介 (Introduction of NuSTAR) ................................ ................................ ..... 26 2.2.2 X光望遠鏡與偵測器 光望遠鏡與偵測器 光望遠鏡與偵測器 (X-ray Telescope and Detector) ................................ ................. 27 2.2.3 觀測資料處理 觀測資料處理 (Data Reduction) ................................ ................................ .................... 29 第三章、 資料分析與結果 資料分析與結果 (Data Analysis and Results) ................................ ..................... 30 3.1 軌道與 自轉 參數 (Orbital and Spin Parameters) ................................ .......................... 31 3.1.1 脈衝抵達時間延遲 脈衝抵達時間延遲 脈衝抵達時間延遲 (Pulse Arrival Time Delay) ................................ .......................... 31 3.1.2 XMM-Newton觀測資料 (XMM-Newton Observation data) ................................ ........ 36 3.1.3 NuSTAR觀測資料 觀測資料 (NuSTAR Observation data) ................................ .......................... 42 3.2 能量與脈衝波形關係 能量與脈衝波形關係 能量與脈衝波形關係 (Energy Dependent Pulse Profile)................................ .............. 49 第四章、 討論 (Discussion) ................................ ................................ ................................ . 58 4.1 自轉 參數 (Spin Parameters) ................................ ................................ ......................... 59 4.2 不同能量的相位延遲 不同能量的相位延遲 不同能量的相位延遲 (Time Lag Dependent Energy)................................ ................... 61 4.2.1 XMM401 & XMM501的低能延遲 的低能延遲 (Soft Lag of XMM401 & XMM501) ................. 62 4.2.2 Nu4002的低能延遲 的低能延遲 (Soft Lag of Nu4002) ................................ ................................ ... 63 4.3 不同能量的脈衝波形 不同能量的脈衝波形 不同能量的脈衝波形 (Energy Dependent Pulse Profile)................................ .............. 64 4.3.1 脈衝強度 (Pulse Fraction) ................................ ................................ .............................. 64 4.3.2 脈衝波形 (Pulse Profile) ................................ ................................ .............................. 65 第五章、 結論 (Summary) ................................ ................................ ................................ ... 66 參考文獻 (References) ................................ ................................ ................................ .............. 67

    1. Alpar, M. A., Cheng, A. F., Ruderman, M. A., & Shaham, J. 1982, Natur, 300, 728
    2. Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M., & Goss, W. M. 1982, Natur, 300, 615
    3. Chou, Y., Chung, Y., Hu, C.-P., & Yang, T.-C. 2008, ApJ, 678, 1316
    4. Cui, W., Morgan, E., & Titarchuk, L. 1998, ApJ, 504, L27
    5. De Falco, V., Kuiper, L., Bozzo, E., et al. 2017, A&A, 603, A16
    6. Ebrero, J., XMM-Newton Users Handbook, Issue 2.16, ESA: XMM-Newton SOC, 2018
    7. Falanga, M., & Titarchuk, L. 2007, ApJ, 661, 1084
    8. Falanga, M., Kuiper, L., Poutanen, J., et al. 2005, A&A, 444, 15
    9. Falanga, M., Kuiper, L., Poutanen, J., et al. 2011, A&A, 529, A68
    10. Falanga, M., Kuiper, L., Poutanen, J., et al. 2012, A&A, 545, A26
    11. Galloway, D. K., Morgan, E. H., Krauss, M. I., Kaaret, P., & Chakrabarty, D. 2007, ApJ, 654, L73
    12. Gierliński, M., & Poutanen, J. 2005, MNRAS, 359, 1261
    13. Gierliński, M., Done, C., & Barret, D. 2002, MNRAS, 331, 141
    14. Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Natur, 217, 709
    15. Ibragimov, A., Kajava, J. J. E., & Poutanen, J. 2011, MNRAS, 415, 1864
    16. Ibragimov, A., & Poutanen, J. 2009, MNRAS, 400, 492
    17. Kennea, J. A., Evans, P. A., Beardmore, A. P., et al. 2016, ATel, 8884, 1
    18. Manchester, R. N. 2017, JApA, 38, 42
    19. NuSTAR SOC, NuSTAR Observatory Guide, Version 3.2, 2016
    20. Papitto, A., Ferrigno, C., Bozzo, E., et al. 2013, Nature, 501, 517
    21. Patruno, A., Altamirano, D., Hessels, J. W. T., et al. 2009, ApJ, 690, 1856
    22. Poutanen, J. 2004, in X-ray Timing 2003: Rossi and Beyond, ed. P. Kaaret, F. K. Lamb, & J. H. Swank (Melville, NY: AIP), 228
    23. Poutanen, J., & Gierliński, M. 2003, MNRAS, 343, 1301
    24. Radhakrishnan, V., & Srinivasan, G. 1982, CSci, 51, 1096
    25. Rappaport, S. A., Fregeau, J. M., & Spruit, H. 2004, ApJ, 606, 436
    26. Sanna, A., Papitto, A., Burderi1, L., et al. 2017, A&A, 598, A34
    27. Serino, M., Tanaka, K., Negoro, H., et al. 2016, ATel, 8872, 1
    28. Seward, F. D., Charles, P. A. 2010, Exploring the X-ray Universe (Cambridge University Press), 2nd, 174
    29. Tauris, T. M., & van den Heuvel, E. P. J. 2006, in Compact Stellar X-ray Sources, ed. W. H. G. Lewin & M. van der Klis (Cambridge: Cambridge Univ. Press), 623
    30. Tudor, V., Bahramian, A., & Sivako , G., et al. 2016, ATel, 8914, 1
    31. Wijnands, R., & van der Klis, M. 1998, Natur, 394, 344
    32. 蔡兆陽,「長期監測吸積驅動毫秒波霎SAX J1808.4-3658 之時變性質」,國立中央大學,碩士論文,民國95年
    33. 鄭寶玲,「吸積毫秒脈衝星 XTE J0929-314 之不同能量 間脈衝相位關係之研究」,國立中央大學,碩士論文,民國98年
    34. 鍾怡音,「吸積驅動毫秒脈衝星 XTE J1814-338 之軌道參數及不同能量間相位延遲之研究」,國立中央大學,碩士論文,民國96年

    QR CODE
    :::