| 研究生: |
黃郅軒 Chih-hsuan Huang |
|---|---|
| 論文名稱: |
儲槽內顆粒流動與發聲特性之研究 The study of the granular flow and the characteristic of emitted sound in the silo |
| 指導教授: |
周憲德
Hsien-ter Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 漏斗 、顆粒流 、表面流 、堆積 、聲波 |
| 外文關鍵詞: | Silo, Granular flow, Surface flow, Deposition, Sound wave |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土石流之次聲監測乃運用顆粒在運動時所散發聲音之特性,因此本研
究經由實驗找出顆粒撞擊時之音頻特性,有益於了解顆粒運動時之發聲機制。本研究運用二維漏斗內填置細磨石,使細磨石由下方流出後墜落於二維與三維兩種不同邊界條件之渠槽。底床之材質分別為棉布、鬆散顆粒、堅硬顆粒、壓克力等四種,分析顆粒撞擊時之特徵頻率以及流動過程。研究發現顆粒於漏斗中之流動型態可分成主要流動區、表面流動區、蠕動區與靜止區等四個區域,而漏斗中顆粒出流量則有周期性之高低變化。顆粒撞擊於柔軟材質時所散發之特徵頻率與音壓強度皆為較低之情況;當撞擊於堅硬材質之音頻與音壓強度則為較高之情況,顯示顆粒撞擊之頻率與撞擊面之性質及速度有密不可分之關係。
The acoustic monitoring system of debris flows was usually carried out by means of detecting the sound during the particle movements. This study investigated the characteristic of emitted sound while the particle collisions in the laboratory, and it may help understanding the mechanism of sound generation for particle motions. In this work, the spherical mill stones were filled in a quasi-2D silo. Then, particles flow out from the bottom outlet and fall down to the lower 2D and 3D rectangular box, respectively. Four different bed material such as cotton cloth, loose packing particles, dense packing particles and acrylic plate were set up at the box and the sound characteristics and flow behavior with each other. The flow pattern in the silo were classified as core flow zone, surface flow layer, creeping zone and stationary zone. The flow rate at the orifice shown a significant periodic variation due to the arching effect. The dominant frequency and the sound pressure level resulted from particles impact on the soft bed material is lower than that on the hard one. The result demonstrates that both the impact surface and the velocity play important roles on the dominant frequency of particle collisions.
參考文獻
1.周憲德,(2003),「 坡地災害次聲特性與監測系統之研究」,農委會水土保持局報告。
2.黃清哲、謝正倫、尹孝元、鄭友誠,(2002),「土石流地聲特性之實驗研究」, 第五屆中日防災論文集,台南成功大學,第29-42頁。
3.劉格非、李欣輯,(1997),「地聲探測器應用於土石流預警」,國立臺灣大學水工試驗所,民國八十六年六月。
4.章書成、洪勇、余斌,(2002),「泥石流次聲特性及警報裝置」,中國科學院、水利部成都山地害與環境研究所。
5.蕭述三,楊士震與陳成庭,(1998),「二維平面儲槽顆粒體實驗流場分析」,Proceedings Symposium on Transport and Applications,台北,台灣。
6.楊富傑,(2005),「以HHT分析法研究陣風風場中建築物之表面風壓」,國立中央大學土木工程研究所碩士論文。
7.Andreotti, B. (2004). The song of dunes as a wave-particle mode locking, Physical Review Letter, 93, 238001.
8.Andreotti, B., L. Bonneau and E. Clement (2008). Comment on ''Solving the mystery of booming sand dunes''by Nathalie M. Vriend et al. Physical Review Letter, 35, L08306.
9.Bagnold, R. A. (1966). The shearing and dilatation of dry sand and the singing mechanism. Proc. Roy. Soc. 295A, 219–232.
10.Bonneau, L., B. Andreotti, and E. Clement.(2008).Evidence of Raleigh -Hertz surface waves and shear stiffness anomaly in granular media, Physical Review Letter.
11.Cail, J., N. Hall, M. Elenany, D. Z. Zhu and N. Rajaratnam (2010). Observations on sand jets in air, Journal of Engineering Mechanics, Vol. 136, Issue 9.
12.Capart, H., D.L. Young and Y. Zech (2002). Voronoi imaging methods for the measurement of granular flows, Experiments in Fluids, Vol. 32, pp. 121-135.
13.Dagois-Bohy, S., S. Ngo, Sylvain Courrech du Pont and S. Douady (2010). Laboratory singing sand avalanches, Ultrasonics, 50(2), 127-132.
14.Douady, S. A., Manning, P. Hersen, H. Elbelrhiti, S. Protiere, A. Daerr and B. Kabbachi (2006). The song of the dunes as a self-synchronized instrument, Physical Review Letter, 97, 018002.
15.González-Montellano, C., F Ayuga and J. Y. Ooi (2010). Discrete element modelling of grain flow in a planar silo: influence of simulation parameters, Granular Matter.
16.Hart, J. (2011). A study of granular solids in silos with and without an insert, Physical Review Letters, Vol. 86, No. 15., 3308.
17.Henrique, C., M.A. Aquirre, A. Calvo, I. Ippolito and D. Bideau, (1997). Experimental acoustic technique in granular flows, Powder technology.
18.Huang, N.E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shin, Q. Zheng, N. C. Yen, C. C. Tung and H. H. Liu (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proceedings of Royal Society of Londom, Series A 454, pp.903-995.
19.Huang, N.E., Z. Shen, S. R. Long (1999). Anew view of nonlinear water wave : the Hilbert spectrum, Annu. Rev. Fluid Mech., Vol. 31, pp.417-457.
20.Kvapil, R. (1959). Theorie der schuettgutbewgung. Berlin, V. E. B, Verlag Technik.
21.Leszczynski, J. S. and T. Blaszyk (2010). Modeling the transition between stable and unstable operation while emptying a silo, Granular Matter.
22.Patitsas, A. J. (2003). Booming and singing acoustic emissions from fluidized granular beds, Journal of Fluids and Structures, 17(2), 287-315.
23.Vriend, N. M., M. L. Hunt, R. W. Clayton, C. E. Brennen, K. S. Brantley and A. Ruiz-Angulo (2007). Solving the mystery of booming sand dunes, Geophysical Review Letter, 34, L16306.
24.Vriend, N. M., M. L. Hunt, R. W. Clayton, C. E. Brennen, K. S. Brantley and A. Ruiz-Angulo (2007). Reply to comment by B. Andreotti et al. on ‘‘Solving the mystery of booming sand dunes’’, Geophysical Review Letter, 35, L08307.
25.Zhang, K. (1997). Flow of particulate solids in silos. Edinburgh, University of Edinburgh. PhD. thesis, U.K.