跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李國志
Guo-jhih Li
論文名稱: 銅片上電化學法披覆摻銀氧化鋅奈米柱結構並探討特性
Electrochemical coating of Ag-doped ZnO nanorods on copper plate to study their structure and charatcterization
指導教授: 林景崎
Jing-chie Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 118
中文關鍵詞: 電化學合成薄膜摻銀氧化鋅奈米柱p-型半導體
外文關鍵詞: Electrochemical method, thin film, Ag doped ZnO, nanorods, p-type ZnO
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在含2、6、10及14 μM在含硝酸銀及2 mM六亞甲基四胺之2 mM硝酸鋅溶液中,利用三極式定電位法於銅箔表面控制電位在-0.4 V ~ -1.0 V範圍內進行電化學反應,期望獲得摻銀p-型氧化鋅奈米柱之披覆薄膜。披覆膜經SEM觀察顯示:薄膜由六角奈米柱構成,隨著電位增加,薄膜單位面積之奈米柱分佈密度增高,奈米柱直徑也增大。經XRD分析,薄膜所含奈米柱屬於六方纖鋅礦結構之氧化鋅,其(002)結晶面特徵峰隨溶液中銀離子濃度增加而朝小角度偏移,推測銀在氧化鋅中摻雜濃度逐漸增高,使經扭曲而增加(002)晶面之間距。經300 ℃退火1小時後,此(002)繞射峰更尖銳,顯示結晶性更好。披覆膜的XPS分析,經對Ag 3d5/2圖譜去混參處理(deconvolution),得知其在368.27 eV為Ag+之訊號。以電化學阻抗頻譜之Mott–Schottky法分析,確認所得之摻銀氧化鋅奈米柱電化學披覆膜屬於p-型半導體,所有電化學條件中,在含6 μM,硝酸銀之溶液中,電位控制在-1.0 V所得薄膜,其載子(電洞)濃度最高,約為1.35×1013cm-3。研究成果顯示已可在銅箔表面利用電化學法成功披覆摻銀之p-型氧化鋅奈米柱披構成之薄膜。


    The aim of this work was to prepare p-type semiconducting Ag-doped ZnO thin films consisting of nano rods on a Cu-foil (99% in purity) by three-electrode electrochemical method. The reaction was carried out in a 2 mM zinc nitrate solution containing 2 mM hexamine with 2, 6, 10 and 14 μM silver nitrate at 80 ℃ under constant potentials in the range from -0.4 V to -1.0 V against the reference electrode Ag/(AgCl, sat. KCl). Examining through SEM, the coating comprised hexagonal nanorods with their diameters increasing and their distribution denser with more negative potentials applied in the process. After analysis by XRD, the coatings were identified as wurtzite ZnO crystals preferred at (002). This (002) peak shifted to a lower angle in 2θas the films come from the solution containing higher concentration of silver nitrate; it became sharper post annealing in 300 ℃. The XPS of the coating revealed the Ag 3d5/2 spectra characterized by a peak with binding energy at 368.27 eV (i.e., a signal of AgZn-O in ZnO crystals) after deconvolution. Mott-schottky analysis, conducted through EIS, confirmed that p-type thin films consisting of Ag doped ZnO nanorods could be successfully prepared by electrochemical method. The film prepared at -1.0 V in the zinc nitrate containing 6 μM silver nitrate revealed the highest carry concentration (at 1.35×1013 cm-3).

    摘 要 i ABSTRACT ii 目 錄 iii 表目錄 viii 圖目錄 ix 一、前 言 1 1-1 研究背景 1 1-2 研究動機 2 1-3 研究目的 3 1-4 論文架構 4 2-1 氧化鋅介紹 5 2-1-1 氧化鋅薄膜的摻雜 6 2-1-2 銀離子摻雜文獻回顧 8 2-2 電化學技術介紹 9 2-2-1 電化學沉積實驗方法 11 2-2-2 電化學沉積氧化鋅之反應機制 11 三、研究方法 13 3-1 實驗規劃 13 3-2 試片前處理 13 3-2-1 純氧化鋅電鍍液與摻雜銀之氧化鋅電鍍液配置 13 3-3 實驗參數 14 3-3-1 改變純氧化鋅奈米柱沉積電位 14 3-3-2 改變摻銀氧化鋅奈米柱沉積電位與銀摻雜濃度 14 3-3-3 改變退火溫度 14 3-4 實驗藥品、裝置、分析儀器 15 3-4-1 實驗藥品 15 3-4-2 實驗裝置 15 3-5 電鍍液之性質分析 16 3-5-1 溶液導電度分析 16 3-5-2 溶液pH值分析 16 3-6 氧化鋅之性質分析 16 3-6-1 顯微結構鑑定 16 3-6-2 晶體結構分析 (Grazing Incident X-ray Diffraction) 16 3-6-3拉曼光譜儀(Raman System) 17 3-6-4 Mott-Schottky 分析 17 3-6-5 光致螢光光譜分析 (Photoluminescence Spectroscopy) 18 3-6-6 化學元素鍵結能分析 (X-ray Photoelectron Spectroscopy) 18 四、實驗結果 20 4-1純氧化鋅奈米柱 20 4-1-1實驗前電鍍液之pH值與導電度量測 20 4-1-2 電鍍電位對純氧化鋅奈米柱形貌之影響 20 4-1-3 表面形貌分析 21 4-1-4 X光繞射儀分析 22 4-2 摻銀氧化鋅奈米柱 23 4-2-1 電鍍電位對摻銀氧化鋅奈米柱形貌之影響 23 4-2-2 表面形貌分析 23 4-2-3 X光繞射儀分析 25 4-2-4 ICP-MS分析 26 4-2-5 化學元素鍵結能分析 26 4-2-6 銀摻雜前後氧化鋅拉曼光譜分析 27 4-2-7 銀摻雜氧化鋅奈米柱螢光光譜分析 28 4-2-8 銀摻雜氧化鋅載子特性、濃度分析 29 4-3 退火處理之純氧化鋅及摻銀氧化鋅奈米柱 30 4-3-1 表面形貌分析 30 4-3-2 X光繞射儀分析 31 4-3-3 化學元素鍵結能分析 32 4-3-4 銀摻雜氧化鋅經退火處理之拉曼光譜分析 34 4-3-5 銀摻雜氧化鋅奈米柱經退火後螢光光譜分析 35 五、實驗討論 36 5-1 電化學沉積氧化鋅柱 36 5-1-1 純氧化鋅奈米柱 36 5-1-2 摻銀氧化鋅奈米柱 36 5-2 不同沉積電位對氧化鋅奈米柱形貌之影響 37 5-3 晶體結構分析 38 5-3-1 不同沉積電位對晶體結構之影響 38 5-3-2 氧化鋅摻雜後對於晶體結構之影響 39 5-4 成份分析 41 5-4-1 XPS分析結果討論 41 5-5 光學特性分析 42 5-5-1 氧化鋅摻雜後對於螢光光譜之影響 42 5-6 銀摻雜氧化鋅經退火前後之拉曼光譜分析 44 5-7 載子特性分析 45 5-7-1銀摻雜氧化鋅對Mott-schottky分析之影響 45 六、結論 46 七、未來展望 48 八、參考文獻 49

    [1] 楊明輝,“透明導電膜”,藝軒圖書出版社, 2008年二月第一版
    [2] 許國銓, ”科技玻璃 -高性能透明導電玻璃”, 材料與社會 , 84期, (82),110-119.
    [3] T. Homma, T. Ueno, K. Sekizawa, A. T. M. Hirata, J. Occup. Health 45 (2003) 137.
    [4] T. Minami, H. Sato, H. Nanto , Jpn. J.Appl. Phy. 24 (1985) L781.
    [5] Thomas, G., Materials science - Invisible circuits. Nature, 1997.389(6654): p. 907-908.
    [6] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano,M. Kasuga, A. Shimizu, Jpn. J. Appl. Phys. 36 (1997)L1453.
    [7] W. Jin. Lee, J. Kang, K. J. Chang, Physica B, 376-377 (2006)699.
    [8] X. L. Guo, H. Tabata, T. Kawai, J. Cryst. Growth, 223(2001) 135.
    [9] M. Joseph, H. Tabata, T. Kawai, Appl. Phys. Lett. 74 (1999)2534.
    [10] X. B. Wang, C. Song, D. M. Li, K. W. Geng, F. Zeng, F. Pan, Applied Surface Science, 253 (2006) 1639.
    [11] D. C. Reynolds, C. W. Litton, T. C. Collins, Phys. Rev. 140 (1965)B1726.
    [12] Banerjee, A.N. K.K. Chattopadhyay, Progress in Crystal Growth and Characterization of Materials, 2005.50(1-3): p. 52-105.
    [13] Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, C. J.Youn, Applied Physics Letters, 2005. 87(15).
    [14] A. Krtschil, A. Dadgar, N. Oleynik, J. Blasing, A. Diez, A. Krost, Applied Physics Letters, 2005. 87(26): p. 3.
    [15] B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei, B. H. Li, Y. M. Lv, X. W. Fan, L. X. Guan, G. Z. Xing, C. X. Cong, Y. P. Xie, Journal of Applied Physics, 2006. 99(12).
    [16] L. L. Chen, Z. Z. Ye, J. G. Lu, P. K. Chu, Appli d Physics Letters, 2006. 89(25).
    [17] A.Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K.Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, 2005. 4(1): p. 42-46.
    [18] V. Kobrinsky, A. Rothschild, V. Lumelsky, Y. Komem, Y. Lifshitz, Applied Physics Letters, 2008. 93(11).
    [19] J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, K. V. Rao, Progress in Materials Science, 58 (2013) 874–985.
    [20] Y. Yan, M. M. Jassim, S. Huai Wei, Appl. Phys. Lett. 89, 181912 (2006)
    [21] L. G. Ren, D. C. Ren B.Qiong, Electrochemistry Communications . 9 (2007) 863–868.
    [22] F. J. Sheini, I. S. Mull, D. S. Joag, M. A. More, Thin Solid Films. 517 (2009) 6605–6611.
    [23] 羅惟隆,「水蒸氣及銅膜對 Ge-GeOx 核殼奈米線及Si1-XGeXO 奈米線生長之影響」,國立成功大學,碩士論文,民國96 年。
    [24] J. C. Lin, S. B. Jang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang, J. H. Yang, J. Micromech. Microeng, 15 (2005) 2405.
    [25] T. K. Chang, J. C. Lin, J. H. Yang, P. C. Yeh, D. L. Lee, S. B. Jiang, J. Micromech, Microeng, 17 (2007) 2336.
    [26] J. C. Lin, T. K. Chang, J. H. Yang, P. C. Yeh, S. B. Jiang, APCCC 14 Conference, 2006.
    [27] J. C. Lin, S. B. Jiang, P. C. Yeh, S. K. Liao, T. K. Chang, J. H. Yang, Automation Conference, 2005.
    [28] J. H. Yang, J. C. Lin, T. K. Chang, G. Y. Lai, S. B. Jiang, J. Micromech, Microeng, 18(2008) 055023.
    [29] J. C. Lin, T. K. Chang, J. H. Yang, J. H. Jeng, D. L. Lee, S. B. Jiang, J. Micromech, Microeng, 19 (2009) 015030.
    [30] J. H. Yang, J. C. Lin, T. K. Chang, X. B. You, S. B. Jiang, J. Micromech Microeng, 19(2009) 025015.
    [31] 溫慧怡,「高長寬比氧化鋅奈米柱之生成-氫氣後處理效應研究」,國立成功大學,碩士論文,民國 92 年。
    [32] 林志誠,「以脈衝式電流電化學沉積法」,國立成功大學,碩士論文,民國 96 年。
    [33] 邱晉億,「低維度奈米結構氧化鋅之製備與特性量測」,南台科技大學,碩士論文,民國 95 年。
    [34] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T. Yao, Journal of Applied Physics, 84, 3912, (1998).
    [35] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Applied Physics Letters, 72, 3270 (1998).
    [36] B. K. Choi, D. H. Chang, Y. S. Yoon, S. J. Kang, Journal of Materials Science: Materials in Electronics, 17, 1011-1015, (2006).
    [37] 范凱雄,「氧化鋯鋅溶凝膠薄膜之製備及其在薄膜電晶體支應用研究」,逢甲大學,碩士論文,民國96年。
    [38] B. Y. Oh, M. C. Jeong, W. Lee, J. M. Myoung, Journal of Crystal Growth, 274, 453–457, (2005).
    [39] L. Dghoughi, F. Ouachtari, M. Addou, B. Elidrissi, H. Erguig, A. Rmili, A. Bouaoud, Physica B, 405, 2277, (2010).
    [40] J. H. Lee, C. Y. Chou, Z. Bi, C. F. Tsai, H. Wang, Nanotechnology, 20, 395704, (2009).
    [41] D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J. h. Jeong, B. Cheong, Y. J. Baik, W. M. Kim, Thin Solid Films, 515, 1364–1369, (2006).
    [42] M. A. Lucio-Lopez, M. A. Luna-Arias, A. Maldonado, M. dela, L. Olvera, D. R. Acosta, Solar Energy Materials and Solar Cells, 90, 733, (2006).
    [43] S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Physica E, 35, 131, (2006).
    [44] A. Bougrine, A. E. Hichou, M. Addou, J. Ebothé, A. Kachouane, M. Troyon, Materials Chemistry and Physics, 80, 438–445, (2003).
    [45] J. H. Lee, B. O. Park, Thin Solid Films, 426, 94–99, (2003).
    [46] C. Y. Tsay, H. C. Cheng, Y. T. Tung, W. H. Tuan, C. K. Lin, Thin Solid Films, 517, 1032–1036, (2008).
    [47] Shalaka C. Navale, I.S. Mulla, Materials Science and Engineering C, 29, 1317–1320, (2009).
    [48] S. Ilican, M. Caglar, Y. Caglar, Applied Surface Science, 256, 7204–7210, (2010).
    [49] F. J. Sheini, D. S. Joag, M. A. More, Thin Solid Films, 519, 184–189, (2010).
    [50] S. B. Zhang, S. H. Wei, A. Zunger, Phys. Rev. B, 63 (2001)75205.
    [51] H. Wenckstern, R. Pickenhain, H. Schmidt, M. Brandt, G. Biehne, M. Lorenz, M. Grundmann, G. Brauer, Appl. Phys. Lett, 89(2006) 092122.
    [52] T. V. Butkhuzi, A. V. Bureyev, A. N. Georgobiani, N. P. Kekelidze, T. G. Khulordava, J. Cryst. Growth, 117 (1992) 366.
    [53] J. Lim, K. Shin, C. Lee, Journal of materials science, 39 (2004) 3195.
    [54] K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, S. Niki, J. Cryst. Growth, 237-239 (2002) 503.
    [55] J. K. Kim, J. L. Lee, J. W. Lee, Y. J. Park, T. Kim, J. Vac. Sci. Technol. B, 17 (1999) 497.
    [56] K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, S. J. Park, Appl. Phys.Lett, 83 (2003) 63.
    [57] C. H. Park, S. B. Zhang, and Su-Huai Wei, Phys. Rev. B, 66 (2002) 073202.
    [58] N. Xu,_ Y. Xu, L. Li, Y. Shen, T. Zhang, J. Wu, J. Sun, Z. Ying, J. Vac. Sci. Technol, A24(3) (2006) 517.
    [59] Y. R. Ryu, T. S. Lee, H. W. White, Appl. Phys. Lett. 83 (2003) 87.
    [60] S. Limpijumnong, S. B. Zhang, S. H. Wei, C. H. Park, Appl. Phys. Lett, 92 (2004) 155504.
    [61] A. Hartmann, M. K. Puchert, R. N. Lamb, Surface and Interface Analysis, 24 (1996) 671.
    [62] R. K. Sahu, K. Ganguly, T. Mishra, M. Mishra, R. S. Ningthoujam, S. K. Roy, L. C. Pathak, Journal of Colloid and Interface Science, 366 (2012) 8–15.
    [63] Y. Yan, S. H. Wei, phys. stat. sol. (b) 245, No. 4, 641–652 (2008).
    [64] W. J. Li, C. Y. Kong, H. B. Ruan, G. P. Qin, G. J. Huang, T. Y. Yang, W. W. Liang, Y. H. Zhao, X. D. Meng, P. Yu, Y. T. Cui, L. Fang, Solid State Communications, 152 (2012) 147–150.
    [65] L. Duan, W. Gao, R. Chen, Z. Fu, Solid State Communications, 145 (2008) 479–481.
    [66] R. Deng, Y. Zou, H. Tang, Physica B, 403 (2008) 2004–2007.
    [67] I. S. Kim, E. K. Jeong, D. Y. Kim, M. Kumar, S. Y. Choi, Applied Surface Science. 255 (2009) 4011–4014.
    [68] Z. Yan, Y. Ma, P. Deng, Z. Yu, C. Liu, Z. Song, Applied Surface Science, 256 (2010) 2289–2292.
    [69] Y. Zhang, J. Mu, Journal of Colloid and Interface Science, 309 (2007) 478–484.
    [70] M. A. Thomas, J. B. Cui, J. Appl. Phys. 105, 093533 (2009).
    [71] Y. Jin, Q. Cui, K. Wang, J. Hao, Q. Wang, J. Zhang, J. Appl. Phys, 109 053521 (2011).
    [72] R. T. Sapkal, S. S. Shinde, A. R. Babar, A. V. Moholkar, K. Y. Rajpure, C. H. Bhosale, Mater. Express. Vol. 2, 2012.
    [73] L. Duana, W. Gaoa, R. Chena, Z. Fub, Solid State Communications, 145 (2008) 479–481.
    [74] K. Laurent, D. P. Yu, J. Phys. D: Appl. Phys, 41 (2008) 195410 (7pp).
    [75] R. Deng, B.Yao, Y. F. Li, T. Yang, B. H. Li, Z. Z. Zhang, C. X. Shan, J. Y. Zhang, D. Z. Shen, Journal of Crystal Growth, 312(2010)1813–1816.
    [76] R. G. Ehl, A. J. Ihde, J. Chem. Educ., 31, 5, 226, (1954).
    [77] Y. Hames, Z. Alpaslan, A. K. Semen, S. E. San, Y. Yerli, Solar Energy, 84, 426–431, (2010).
    [78] R. K. Pandey, S. N. Sahu, S. Chandra, Marcel Dekker, Inc., 64, 1996.
    [79] F. Norifumi, N. Tokihiro, G. Seiki, X. Jifang, I. Taichiro, Journal of Crystal Growth, 130, 269, (1993).
    [80] M. Izaki, T. Omi, Journal of The Electrochemical Society, 144, L3, (1997).
    [81] Z. Liu, E. Lei, J. Ya, Y. Xin, Applied Surface Science, 255 (2009) 6415–6420.
    [82] H. McMurdie, M. Morris, E. Evans, B. Paretzkin, W. W. Ng, L. Ettlinger, C. Hubbard, Powder Diffraction, 1, 76 (1986).
    [83] F. Fang, A. M. C. Ng, X. Y. Chen, A. B. Djurisˇic ́, Y. C. Zhong, K. S. Wong, P. W. K. Fong, H. F. Lui, C. Surya, W. K. Chan, Materials Chemistry and Physics, 125 813–817 (2011).
    [84] B. Vincent Crist, Demo Version(172 pages)PDF Handbooks of Monochromatic XPS Spectra, (c)2005 XPS International LLC.
    [85] Bielmann. M. et al, Phys. Rev. B 65, 235431 (2001).
    [86] K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jiang, C. L. Perkins et al., J. Appl. Phys. 102, 023517 (2007).
    [87] B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Chevir, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarstrom, F. Odobel, S. Jobic, J. Am. Chem. Soc. 2012, 134, 464–470.
    [88] H. Q. Bian et al, Journal of Crystal Growth, 394(2014) 132-136.
    [89] J. A. Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd., (2001).
    [90] K. Liu, B. Yang, Journal of Luminescence, 129(2009) 969-972
    [91] K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, Z. S. Hu, Materials Transactions, 51, 7, 1340-1345, (2010).
    [92] M. Bielmann, P. Schwaller, P. Ruffieux, PHYSICAL REVIEW B, 65, 235431(2002).
    [93] U. Ozgur, Ya. I. Alivov, C. Liu, A. Take, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, Journal of Applied Physics, 98, 041301 (2005).
    [94] B. Lin, Z. Fu, Y. Jia, Applied Physics Letters, 79, 7, (2001).
    [95] T. Kogure, Y. Bando, Journal of Electron Microscopy, 47, 7903, (1993).
    [96] A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok, T. Y. Seong, Applied Physics Letters, 76, 550, (2000).
    [97] C. H. Bates, W. B. White, R. Roy, Science, 137, 993, (1962).
    [98] A. Ashrafi, C. Jagadish, Jorunal of Applied Physics, 102, 071101, (2007).
    [99] J. E. Jaffe, J. A. Snyder, Z. Lin, A. C. Hess, Physical Review B, 62, 1660, (2000).
    [100] X. Liu, X. Wu, H. Cao, R. P. H. Chang, Jorunal of Applied Physics, 95, 3141, (2004).
    [101] J. Zhong, A. H. Kitati, P. Mascher, W. Puff, Journal of The Electrochemical Society, 140, 3644, (1993).
    [102] D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, W. K. Chan, Applied Physics Letters, 85, 1601, (2004).
    [103] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, Angewandte Chemie International Edition, 42, 3031, (2003).
    [104] F. Tuomisto, K. Saarinen, D.C. Look, G.C. Farlow, Physical Review B, 72, 085206, (2005).
    [105] X. Yang, G. Du, X. Wang, J. Wang, B. Liu, Y. Zhang, D. Liu, D. Liu, H. C. Ong, S.Yang, Journal of Crystial Growth, 252, 275, (2003).
    [106] M. Liu, A. H. Kitai, P. Mascher, Journal of Luminescence, 54, 35, (1992).
    [107] E. G. Bylander, Journal of Applied Physics, 49, 188, (1978).
    [108] M. Gomi, N. Oohira, K.Ozaki, M. Koyano, Japanese Journal of Applied Physics, 42, 481, (2003).
    [109] K. Johnston, M. O. Henry, D. M. Cabe, T. Agne, T. Wichert, Second Workshop on “SOXESS European Network on ZnO”, 27-30, Caernarfon, Wales, UK., 2004.
    [110] A. Janotti, C. G. Van de Walle, Physical Review B, 76, 165202, (2007).
    [111] B. Lin, Z. Fu, Y. Jia, Applied Physics Letters, 79, 7, (2001).

    QR CODE
    :::