| 研究生: |
李國志 Guo-jhih Li |
|---|---|
| 論文名稱: |
銅片上電化學法披覆摻銀氧化鋅奈米柱結構並探討特性 Electrochemical coating of Ag-doped ZnO nanorods on copper plate to study their structure and charatcterization |
| 指導教授: |
林景崎
Jing-chie Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 電化學合成 、薄膜 、摻銀氧化鋅 、奈米柱 、p-型半導體 |
| 外文關鍵詞: | Electrochemical method, thin film, Ag doped ZnO, nanorods, p-type ZnO |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在含2、6、10及14 μM在含硝酸銀及2 mM六亞甲基四胺之2 mM硝酸鋅溶液中,利用三極式定電位法於銅箔表面控制電位在-0.4 V ~ -1.0 V範圍內進行電化學反應,期望獲得摻銀p-型氧化鋅奈米柱之披覆薄膜。披覆膜經SEM觀察顯示:薄膜由六角奈米柱構成,隨著電位增加,薄膜單位面積之奈米柱分佈密度增高,奈米柱直徑也增大。經XRD分析,薄膜所含奈米柱屬於六方纖鋅礦結構之氧化鋅,其(002)結晶面特徵峰隨溶液中銀離子濃度增加而朝小角度偏移,推測銀在氧化鋅中摻雜濃度逐漸增高,使經扭曲而增加(002)晶面之間距。經300 ℃退火1小時後,此(002)繞射峰更尖銳,顯示結晶性更好。披覆膜的XPS分析,經對Ag 3d5/2圖譜去混參處理(deconvolution),得知其在368.27 eV為Ag+之訊號。以電化學阻抗頻譜之Mott–Schottky法分析,確認所得之摻銀氧化鋅奈米柱電化學披覆膜屬於p-型半導體,所有電化學條件中,在含6 μM,硝酸銀之溶液中,電位控制在-1.0 V所得薄膜,其載子(電洞)濃度最高,約為1.35×1013cm-3。研究成果顯示已可在銅箔表面利用電化學法成功披覆摻銀之p-型氧化鋅奈米柱披構成之薄膜。
The aim of this work was to prepare p-type semiconducting Ag-doped ZnO thin films consisting of nano rods on a Cu-foil (99% in purity) by three-electrode electrochemical method. The reaction was carried out in a 2 mM zinc nitrate solution containing 2 mM hexamine with 2, 6, 10 and 14 μM silver nitrate at 80 ℃ under constant potentials in the range from -0.4 V to -1.0 V against the reference electrode Ag/(AgCl, sat. KCl). Examining through SEM, the coating comprised hexagonal nanorods with their diameters increasing and their distribution denser with more negative potentials applied in the process. After analysis by XRD, the coatings were identified as wurtzite ZnO crystals preferred at (002). This (002) peak shifted to a lower angle in 2θas the films come from the solution containing higher concentration of silver nitrate; it became sharper post annealing in 300 ℃. The XPS of the coating revealed the Ag 3d5/2 spectra characterized by a peak with binding energy at 368.27 eV (i.e., a signal of AgZn-O in ZnO crystals) after deconvolution. Mott-schottky analysis, conducted through EIS, confirmed that p-type thin films consisting of Ag doped ZnO nanorods could be successfully prepared by electrochemical method. The film prepared at -1.0 V in the zinc nitrate containing 6 μM silver nitrate revealed the highest carry concentration (at 1.35×1013 cm-3).
[1] 楊明輝,“透明導電膜”,藝軒圖書出版社, 2008年二月第一版
[2] 許國銓, ”科技玻璃 -高性能透明導電玻璃”, 材料與社會 , 84期, (82),110-119.
[3] T. Homma, T. Ueno, K. Sekizawa, A. T. M. Hirata, J. Occup. Health 45 (2003) 137.
[4] T. Minami, H. Sato, H. Nanto , Jpn. J.Appl. Phy. 24 (1985) L781.
[5] Thomas, G., Materials science - Invisible circuits. Nature, 1997.389(6654): p. 907-908.
[6] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano,M. Kasuga, A. Shimizu, Jpn. J. Appl. Phys. 36 (1997)L1453.
[7] W. Jin. Lee, J. Kang, K. J. Chang, Physica B, 376-377 (2006)699.
[8] X. L. Guo, H. Tabata, T. Kawai, J. Cryst. Growth, 223(2001) 135.
[9] M. Joseph, H. Tabata, T. Kawai, Appl. Phys. Lett. 74 (1999)2534.
[10] X. B. Wang, C. Song, D. M. Li, K. W. Geng, F. Zeng, F. Pan, Applied Surface Science, 253 (2006) 1639.
[11] D. C. Reynolds, C. W. Litton, T. C. Collins, Phys. Rev. 140 (1965)B1726.
[12] Banerjee, A.N. K.K. Chattopadhyay, Progress in Crystal Growth and Characterization of Materials, 2005.50(1-3): p. 52-105.
[13] Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, C. J.Youn, Applied Physics Letters, 2005. 87(15).
[14] A. Krtschil, A. Dadgar, N. Oleynik, J. Blasing, A. Diez, A. Krost, Applied Physics Letters, 2005. 87(26): p. 3.
[15] B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei, B. H. Li, Y. M. Lv, X. W. Fan, L. X. Guan, G. Z. Xing, C. X. Cong, Y. P. Xie, Journal of Applied Physics, 2006. 99(12).
[16] L. L. Chen, Z. Z. Ye, J. G. Lu, P. K. Chu, Appli d Physics Letters, 2006. 89(25).
[17] A.Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K.Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, 2005. 4(1): p. 42-46.
[18] V. Kobrinsky, A. Rothschild, V. Lumelsky, Y. Komem, Y. Lifshitz, Applied Physics Letters, 2008. 93(11).
[19] J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, K. V. Rao, Progress in Materials Science, 58 (2013) 874–985.
[20] Y. Yan, M. M. Jassim, S. Huai Wei, Appl. Phys. Lett. 89, 181912 (2006)
[21] L. G. Ren, D. C. Ren B.Qiong, Electrochemistry Communications . 9 (2007) 863–868.
[22] F. J. Sheini, I. S. Mull, D. S. Joag, M. A. More, Thin Solid Films. 517 (2009) 6605–6611.
[23] 羅惟隆,「水蒸氣及銅膜對 Ge-GeOx 核殼奈米線及Si1-XGeXO 奈米線生長之影響」,國立成功大學,碩士論文,民國96 年。
[24] J. C. Lin, S. B. Jang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang, J. H. Yang, J. Micromech. Microeng, 15 (2005) 2405.
[25] T. K. Chang, J. C. Lin, J. H. Yang, P. C. Yeh, D. L. Lee, S. B. Jiang, J. Micromech, Microeng, 17 (2007) 2336.
[26] J. C. Lin, T. K. Chang, J. H. Yang, P. C. Yeh, S. B. Jiang, APCCC 14 Conference, 2006.
[27] J. C. Lin, S. B. Jiang, P. C. Yeh, S. K. Liao, T. K. Chang, J. H. Yang, Automation Conference, 2005.
[28] J. H. Yang, J. C. Lin, T. K. Chang, G. Y. Lai, S. B. Jiang, J. Micromech, Microeng, 18(2008) 055023.
[29] J. C. Lin, T. K. Chang, J. H. Yang, J. H. Jeng, D. L. Lee, S. B. Jiang, J. Micromech, Microeng, 19 (2009) 015030.
[30] J. H. Yang, J. C. Lin, T. K. Chang, X. B. You, S. B. Jiang, J. Micromech Microeng, 19(2009) 025015.
[31] 溫慧怡,「高長寬比氧化鋅奈米柱之生成-氫氣後處理效應研究」,國立成功大學,碩士論文,民國 92 年。
[32] 林志誠,「以脈衝式電流電化學沉積法」,國立成功大學,碩士論文,民國 96 年。
[33] 邱晉億,「低維度奈米結構氧化鋅之製備與特性量測」,南台科技大學,碩士論文,民國 95 年。
[34] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T. Yao, Journal of Applied Physics, 84, 3912, (1998).
[35] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Applied Physics Letters, 72, 3270 (1998).
[36] B. K. Choi, D. H. Chang, Y. S. Yoon, S. J. Kang, Journal of Materials Science: Materials in Electronics, 17, 1011-1015, (2006).
[37] 范凱雄,「氧化鋯鋅溶凝膠薄膜之製備及其在薄膜電晶體支應用研究」,逢甲大學,碩士論文,民國96年。
[38] B. Y. Oh, M. C. Jeong, W. Lee, J. M. Myoung, Journal of Crystal Growth, 274, 453–457, (2005).
[39] L. Dghoughi, F. Ouachtari, M. Addou, B. Elidrissi, H. Erguig, A. Rmili, A. Bouaoud, Physica B, 405, 2277, (2010).
[40] J. H. Lee, C. Y. Chou, Z. Bi, C. F. Tsai, H. Wang, Nanotechnology, 20, 395704, (2009).
[41] D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J. h. Jeong, B. Cheong, Y. J. Baik, W. M. Kim, Thin Solid Films, 515, 1364–1369, (2006).
[42] M. A. Lucio-Lopez, M. A. Luna-Arias, A. Maldonado, M. dela, L. Olvera, D. R. Acosta, Solar Energy Materials and Solar Cells, 90, 733, (2006).
[43] S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Physica E, 35, 131, (2006).
[44] A. Bougrine, A. E. Hichou, M. Addou, J. Ebothé, A. Kachouane, M. Troyon, Materials Chemistry and Physics, 80, 438–445, (2003).
[45] J. H. Lee, B. O. Park, Thin Solid Films, 426, 94–99, (2003).
[46] C. Y. Tsay, H. C. Cheng, Y. T. Tung, W. H. Tuan, C. K. Lin, Thin Solid Films, 517, 1032–1036, (2008).
[47] Shalaka C. Navale, I.S. Mulla, Materials Science and Engineering C, 29, 1317–1320, (2009).
[48] S. Ilican, M. Caglar, Y. Caglar, Applied Surface Science, 256, 7204–7210, (2010).
[49] F. J. Sheini, D. S. Joag, M. A. More, Thin Solid Films, 519, 184–189, (2010).
[50] S. B. Zhang, S. H. Wei, A. Zunger, Phys. Rev. B, 63 (2001)75205.
[51] H. Wenckstern, R. Pickenhain, H. Schmidt, M. Brandt, G. Biehne, M. Lorenz, M. Grundmann, G. Brauer, Appl. Phys. Lett, 89(2006) 092122.
[52] T. V. Butkhuzi, A. V. Bureyev, A. N. Georgobiani, N. P. Kekelidze, T. G. Khulordava, J. Cryst. Growth, 117 (1992) 366.
[53] J. Lim, K. Shin, C. Lee, Journal of materials science, 39 (2004) 3195.
[54] K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, S. Niki, J. Cryst. Growth, 237-239 (2002) 503.
[55] J. K. Kim, J. L. Lee, J. W. Lee, Y. J. Park, T. Kim, J. Vac. Sci. Technol. B, 17 (1999) 497.
[56] K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, S. J. Park, Appl. Phys.Lett, 83 (2003) 63.
[57] C. H. Park, S. B. Zhang, and Su-Huai Wei, Phys. Rev. B, 66 (2002) 073202.
[58] N. Xu,_ Y. Xu, L. Li, Y. Shen, T. Zhang, J. Wu, J. Sun, Z. Ying, J. Vac. Sci. Technol, A24(3) (2006) 517.
[59] Y. R. Ryu, T. S. Lee, H. W. White, Appl. Phys. Lett. 83 (2003) 87.
[60] S. Limpijumnong, S. B. Zhang, S. H. Wei, C. H. Park, Appl. Phys. Lett, 92 (2004) 155504.
[61] A. Hartmann, M. K. Puchert, R. N. Lamb, Surface and Interface Analysis, 24 (1996) 671.
[62] R. K. Sahu, K. Ganguly, T. Mishra, M. Mishra, R. S. Ningthoujam, S. K. Roy, L. C. Pathak, Journal of Colloid and Interface Science, 366 (2012) 8–15.
[63] Y. Yan, S. H. Wei, phys. stat. sol. (b) 245, No. 4, 641–652 (2008).
[64] W. J. Li, C. Y. Kong, H. B. Ruan, G. P. Qin, G. J. Huang, T. Y. Yang, W. W. Liang, Y. H. Zhao, X. D. Meng, P. Yu, Y. T. Cui, L. Fang, Solid State Communications, 152 (2012) 147–150.
[65] L. Duan, W. Gao, R. Chen, Z. Fu, Solid State Communications, 145 (2008) 479–481.
[66] R. Deng, Y. Zou, H. Tang, Physica B, 403 (2008) 2004–2007.
[67] I. S. Kim, E. K. Jeong, D. Y. Kim, M. Kumar, S. Y. Choi, Applied Surface Science. 255 (2009) 4011–4014.
[68] Z. Yan, Y. Ma, P. Deng, Z. Yu, C. Liu, Z. Song, Applied Surface Science, 256 (2010) 2289–2292.
[69] Y. Zhang, J. Mu, Journal of Colloid and Interface Science, 309 (2007) 478–484.
[70] M. A. Thomas, J. B. Cui, J. Appl. Phys. 105, 093533 (2009).
[71] Y. Jin, Q. Cui, K. Wang, J. Hao, Q. Wang, J. Zhang, J. Appl. Phys, 109 053521 (2011).
[72] R. T. Sapkal, S. S. Shinde, A. R. Babar, A. V. Moholkar, K. Y. Rajpure, C. H. Bhosale, Mater. Express. Vol. 2, 2012.
[73] L. Duana, W. Gaoa, R. Chena, Z. Fub, Solid State Communications, 145 (2008) 479–481.
[74] K. Laurent, D. P. Yu, J. Phys. D: Appl. Phys, 41 (2008) 195410 (7pp).
[75] R. Deng, B.Yao, Y. F. Li, T. Yang, B. H. Li, Z. Z. Zhang, C. X. Shan, J. Y. Zhang, D. Z. Shen, Journal of Crystal Growth, 312(2010)1813–1816.
[76] R. G. Ehl, A. J. Ihde, J. Chem. Educ., 31, 5, 226, (1954).
[77] Y. Hames, Z. Alpaslan, A. K. Semen, S. E. San, Y. Yerli, Solar Energy, 84, 426–431, (2010).
[78] R. K. Pandey, S. N. Sahu, S. Chandra, Marcel Dekker, Inc., 64, 1996.
[79] F. Norifumi, N. Tokihiro, G. Seiki, X. Jifang, I. Taichiro, Journal of Crystal Growth, 130, 269, (1993).
[80] M. Izaki, T. Omi, Journal of The Electrochemical Society, 144, L3, (1997).
[81] Z. Liu, E. Lei, J. Ya, Y. Xin, Applied Surface Science, 255 (2009) 6415–6420.
[82] H. McMurdie, M. Morris, E. Evans, B. Paretzkin, W. W. Ng, L. Ettlinger, C. Hubbard, Powder Diffraction, 1, 76 (1986).
[83] F. Fang, A. M. C. Ng, X. Y. Chen, A. B. Djurisˇic ́, Y. C. Zhong, K. S. Wong, P. W. K. Fong, H. F. Lui, C. Surya, W. K. Chan, Materials Chemistry and Physics, 125 813–817 (2011).
[84] B. Vincent Crist, Demo Version(172 pages)PDF Handbooks of Monochromatic XPS Spectra, (c)2005 XPS International LLC.
[85] Bielmann. M. et al, Phys. Rev. B 65, 235431 (2001).
[86] K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jiang, C. L. Perkins et al., J. Appl. Phys. 102, 023517 (2007).
[87] B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Chevir, M. Boujtita, Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarstrom, F. Odobel, S. Jobic, J. Am. Chem. Soc. 2012, 134, 464–470.
[88] H. Q. Bian et al, Journal of Crystal Growth, 394(2014) 132-136.
[89] J. A. Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd., (2001).
[90] K. Liu, B. Yang, Journal of Luminescence, 129(2009) 969-972
[91] K. J. Chen, F. Y. Hung, Y. T. Chen, S. J. Chang, Z. S. Hu, Materials Transactions, 51, 7, 1340-1345, (2010).
[92] M. Bielmann, P. Schwaller, P. Ruffieux, PHYSICAL REVIEW B, 65, 235431(2002).
[93] U. Ozgur, Ya. I. Alivov, C. Liu, A. Take, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, Journal of Applied Physics, 98, 041301 (2005).
[94] B. Lin, Z. Fu, Y. Jia, Applied Physics Letters, 79, 7, (2001).
[95] T. Kogure, Y. Bando, Journal of Electron Microscopy, 47, 7903, (1993).
[96] A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok, T. Y. Seong, Applied Physics Letters, 76, 550, (2000).
[97] C. H. Bates, W. B. White, R. Roy, Science, 137, 993, (1962).
[98] A. Ashrafi, C. Jagadish, Jorunal of Applied Physics, 102, 071101, (2007).
[99] J. E. Jaffe, J. A. Snyder, Z. Lin, A. C. Hess, Physical Review B, 62, 1660, (2000).
[100] X. Liu, X. Wu, H. Cao, R. P. H. Chang, Jorunal of Applied Physics, 95, 3141, (2004).
[101] J. Zhong, A. H. Kitati, P. Mascher, W. Puff, Journal of The Electrochemical Society, 140, 3644, (1993).
[102] D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, W. K. Chan, Applied Physics Letters, 85, 1601, (2004).
[103] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, Angewandte Chemie International Edition, 42, 3031, (2003).
[104] F. Tuomisto, K. Saarinen, D.C. Look, G.C. Farlow, Physical Review B, 72, 085206, (2005).
[105] X. Yang, G. Du, X. Wang, J. Wang, B. Liu, Y. Zhang, D. Liu, D. Liu, H. C. Ong, S.Yang, Journal of Crystial Growth, 252, 275, (2003).
[106] M. Liu, A. H. Kitai, P. Mascher, Journal of Luminescence, 54, 35, (1992).
[107] E. G. Bylander, Journal of Applied Physics, 49, 188, (1978).
[108] M. Gomi, N. Oohira, K.Ozaki, M. Koyano, Japanese Journal of Applied Physics, 42, 481, (2003).
[109] K. Johnston, M. O. Henry, D. M. Cabe, T. Agne, T. Wichert, Second Workshop on “SOXESS European Network on ZnO”, 27-30, Caernarfon, Wales, UK., 2004.
[110] A. Janotti, C. G. Van de Walle, Physical Review B, 76, 165202, (2007).
[111] B. Lin, Z. Fu, Y. Jia, Applied Physics Letters, 79, 7, (2001).