跳到主要內容

簡易檢索 / 詳目顯示

研究生: 盧盈君
Ying-Jiun Lu
論文名稱: 基於機器學習與經驗模態分解的心律異常數據分類之研究
A Study of Machine Learning-Based Arrhythmia Data Classification with Empirical Mode Decomposition
指導教授: 胡誌麟
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 55
中文關鍵詞: 心律異常分類心電圖訊號經驗模態分解長短期記憶網路機器學習
外文關鍵詞: arrhythmia classification, electrocardiogram (ECG), empirical mode decomposition (EMD), long short-term memory (LSTM), machine learning
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心電圖訊號的心跳分類對於診斷心律異常十分重要,為了有效針對多種心律異常的類 別進行分類,本論文提出一種使用機器學習長短期記憶網路(LSTM)的心律異常分類 方法,每個心電圖訊號透過經驗模態分解 (Empirical Mode Decomposition, EMD) 進行分解,並將感興趣的本質模態函數 (Intrinsic Mode Function, IMF) 結合成一個經過修潤的心電圖訊號。這段預處理後的心電圖訊號則可作為機器學習網路的輸入訊號。利用LSTM對時間序列與長期依賴性的能力,有效地將輸入的心電圖訊號進行分類。依據觀察,與原始訊號相比,EMD能濾除高頻訊號與校正基準線,使每個心跳的QRS波群的特徵變得更加清楚,以提升分類的準確度。相較於先前的方法,我們所提出的方法,在MIT-BIH心律異常資料庫中,達到98.79%的準確度。


    To reduce the high mortality rate caused by heart diseases, classifying heartbeats of ECG signals is crucial for arrhythmia diagnosis. This study in this paper proposes a machine learning-based approach to classify a variety of arrhythmia using the long short- term memory (LSTM) technique. Each ECG signal is decomposed by empirical mode decomposition (EMD), and the intrinsic mode function (IMF) of interest is combined into a revised ECG signal. The pre-processed ECG signal is used as the input signal of the network model. In light of time series and long-term dependence among input signals, LSTM can effectively classify the input ECG signals. This study observes that EMD can filter out the high-frequency signals and correct the baseline by contrast to the original signals. Thus, the QRS characteristics of each beat can become clear, thereby improving the accuracy of classification. Compared with the previous methods, our proposed method achieves high accuracy of 98.79% in the MIT- BIH arrhythmia database.

    摘要 i Abstract ii 圖目錄 v 表目錄 vi 名詞定義表 vii 1 簡介 1 1.1 前言 1 1.2 研究動機 3 1.3 論文貢獻 5 2 研究背景及文獻探討 6 2.1 預處理 6 2.2 特徵提取 8 2.3 機器學習 9 3 研究方法 12 3.1 設計摘要 12 3.2 經驗模態分解 14 3.3 長短期記憶網路(LSTM) 20 3.4 激勵函數(Activation function) 22 3.5 損失函數(Loss function) 24 3.6 實驗流程圖 25 4 實作與結果分析 26 4.1 實驗環境 26 4.2 實驗設計 27 4.2.1 心電圖訊號收集 27 4.2.2 訊號預處理 29 4.2.3 分類 32 4.3 實驗結果 33 4.3.1 分類準確度 33 4.3.2 預處理的準確度差異 35 4.3.3 焦距參數比較 37 4.3.4 分析訓練時間 38 4.3.5 檢驗分類結果 39 4.3.6 與先前研究的比較 41 5 結論與未來研究 43 參考文獻 44

    [1] “Cardiovascular diseases (cvds),” http://www.who.int/mediacentre/factsheets/ fs317/en/, 2017, accessed: 2021-08-22.
    [2] “行政院衛福部統計處 108 年度死因統計,” https://dep.mohw.gov.tw/DOS/ lp-4927-113.html.
    [3] C. Chen, Z. Hua, R. Zhang, G. Liu, and W. Wen, “Automated arrhythmia classification based on a combination network of cnn and lstm,” Biomedical Signal Processing and Control, vol. 57, p. 101819, 2020.
    [4] G. Petmezas, K. Haris, L. Stefanopoulos, V. Kilintzis, A. Tzavelis, J. A. Rogers, A. K. Katsaggelos, and N. Maglaveras, “Automated atrial fibrillation detection using a hybrid cnn-lstm network on imbalanced ecg datasets,” Biomedical Signal Processing and Control, vol. 63, p. 102194, 2021.
    [5] J. Gao, H. Zhang, P. Lu, and Z. Wang, “An effective lstm recurrent network to detect arrhythmia on imbalanced ecg dataset,” Journal of healthcare engineering, vol. 2019, 2019.
    [6] N. I. Hasan and A. Bhattacharjee, “Deep learning approach to cardiovascular disease classification employing modified ecg signal from empirical mode decomposition,” Biomedical Signal Processing and Control, vol. 52, pp. 128–140, 2019.
    [7] S. Aziz, M. U. Khan, Z. A. Choudhry, A. Aymin, and A. Usman, “Ecg-based biometric authentication using empirical mode decomposition and support vector machines,” in 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE, 2019, pp. 0906–0912.
    [8] V. Mondéjar-Guerra, J. Novo, J. Rouco, M. G. Penedo, and M. Ortega, “Heartbeat classification fusing temporal and morphological information of ecgs via ensemble of classifiers,” Biomedical Signal Processing and Control, vol. 47, pp. 41–48, 2019.
    [9] X. Chen, Y. Wang, L. Wang, et al., “Arrhythmia recognition and classification using ecg morphology and segment feature analysis,” IEEE/ACM transactions on computational biology and bioinformatics, vol. 16, no. 1, pp. 131–138, 2018.
    [10] S. Saadatnejad, M. Oveisi, and M. Hashemi, “Lstm-based ecg classification for continuous monitoring on personal wearable devices,” IEEE journal of biomedical and health informatics, vol. 24, no. 2, pp. 515–523, 2019.
    [11] A. Sharma, N. Garg, S. Patidar, R. San Tan, and U. R. Acharya, “Automated pre-screening of arrhythmia using hybrid combination of fourier–bessel expansion and lstm,” Computers in Biology and Medicine, vol. 120, p. 103753, 2020.
    [12] Z. Ge, Z. Zhu, P. Feng, S. Zhang, J. Wang, and B. Zhou, “Ecg-signal classification using svm with multi-feature,” in 2019 8th International Symposium on Next Generation Electronics (ISNE). IEEE, 2019, pp. 1–3.
    [13] E. Izci, M. A. Ozdemir, R. Sadighzadeh, and A. Akan, “Arrhythmia detection on ecg signals by using empirical mode decomposition,” in 2018 Medical Technologies National Congress (TIPTEKNO). IEEE, 2018, pp. 1–4.
    [14] E. J. d. S. Luz, W. R. Schwartz, G. Cámara-Chávez, and D. Menotti, “Ecg-based heartbeat classification for arrhythmia detection: A survey,” Computer methods and programs in biomedicine, vol. 127, pp. 144–164, 2016.
    [15] S. Parvaneh, J. Rubin, S. Babaeizadeh, and M. Xu-Wilson, “Cardiac arrhythmia detection using deep learning: A review,” Journal of electrocardiology, vol. 57, pp. S70–S74, 2019.
    [16] Z. Ebrahimi, M. Loni, M. Daneshtalab, and A. Gharehbaghi, “A review on deep learning methods for ecg arrhythmia classification,” Expert Systems with Applications: X, vol. 7, p. 100033, 2020.
    [17] X. Mei, N. Rao, Q. Li, C. Luo, B. F. Kipkurui, and H. Jiang, “Detecting atrial fibrillation from single-lead ecg using unbalanced multi-classification support vector machine,” in Proceedings of the 2019 4th International Conference on Machine Learning Technologies, 2019, pp. 66–69.
    [18] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
    [19] “Mit-bih arrhythmia database,” https://www.physionet.org/content/mitdb/1.0.0/, accessed: 2021-08-22.
    [20] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, vol. 454, no. 1971, pp. 903–995, 1998.
    [21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
    [22] D. Jyotishi and S. Dandapat, “An lstm-based model for person identification using ecg signal,” IEEE Sensors Letters, vol. 4, no. 8, pp. 1–4, 2020.

    QR CODE
    :::