| 研究生: |
林宜霖 Yi-lin Lin |
|---|---|
| 論文名稱: |
雲微物理參數化法及垂直解析度對降水模擬之影響: 以莫拉克(2009)颱風為例 |
| 指導教授: | 楊明仁 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 雲微物理參數法 |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以2009年莫拉克颱風為例,藉由改變模式的雲微物理參數化法及垂直解析度,設計三組實驗以進行討論,分別包含: i) 單矩量(single-moment;WSM6_31)和雙矩量(double-moment;WDM6_31)參數化法比較,ii) 垂直分層 [21層(WDM6_21)、31層(WDM6_31)和45層(WDM6_mix45)]比較,和iii)四種雙矩量微物理參數化法(WDM6_31, Thompson_31, Morrison_31, Milbrandt and Yau_31)比較共七組模擬。研究目的著重於改進過去模式高估莫拉克颱風期間的山區累積降雨量,並且與觀測的雷達回波、颱風路徑與強度比較;另外也進行定量的降水校驗,比較模式24小時、6小時累積降雨的預報能力。
在實驗組i)中, WDM6_31實驗對莫拉克颱風的累積降雨極值、強度和登陸時間模擬,較WSM6_31實驗更接近觀測。降水校驗的結果以WSM6_31實驗的24小時累積降雨預報能力較WDM6_31實驗差。在實驗組ii)中,三組模擬陸上的平均降雨、颱風路徑和強度差異不大。降水校驗結果,不論是24小時或6小時累積降雨,WDM6_mix45實驗幾乎有最好的表現[預兆得分(TS)、公平預兆得分(ETS)最高;均方根誤差(RMSE)最小]。WDM6_mix45實驗由於垂直解析度較高,能避免同WDM6_21及WDM6_31實驗在模式頂層產生不合理的垂直速度和雷達回波分佈現象,另外透過垂直剖面分析也能看到,WDM6_mix45實驗的眼牆和眼有明顯崩塌;WDM6_21實驗因為中高層大氣的垂直解析度較差,於地形上容易產生不合理的垂直速度。整體而言,WDM6_mix45使得颱風的強度較為減弱,進而改善累積雨量的高估情形。在實驗組iii)中,後三組模擬能明顯改善WDM6_31實驗回波過強和降雨過高的偏差;降雨極值以Thompson_31和Milbrandt and Yau_31實驗兩組模擬改善最多。降水校驗的結果為,各組模擬的偏離係數(BS)在8月8日由低估轉成高估,並且8月8日以Milbrandt and Yau_31實驗各種得分表現最好。詳細討論各組模擬累積降雨情形,顯示研究使用的各降水校驗參數各有其缺失,甚至有時會誤導使用者對於模式降水預報能力的判斷,必須配合降雨分佈結果才能做較客觀的討論。從水相粒子之垂直分佈可知,WDM6方案產生較多的雨水,Thompson方案傾向產生較多的雪,Milbrandt and Yau方案則產生較多的冰晶,這些現象在台灣中央山脈地形的迎風面上更為顯著,主要是由於不同微物理參數法的原先設計環境條件而產生的系統性偏差。
An explicit simulation of Typhoon Morakot(2009) was studied. Three groups of numerical experiments were designed by varying microphysics parameterization schemes and vertical resolution, which were i) single-moment(WSM6_31) and double-moment(WDM6_31) schemes, ii) different vertical resolution(WDM6_21, WDM6_31, WDM6_mix45) and iii)different double-moment schemes(WDM6_31, Thompson_31, Morrison_31, Milbrandt and Yau_31). The study focused on the effects on the accumulated precipitation over mountainous areas, which was usually overestimated by model simulation. In addition to the comparison of radar reflectivity, typhoon tracks and intensity, precipitation maximum and patterns, a series of quantitatively statistics scores were evaluated between the observation data and model output.
In experiment i), WDM6_31 revealed a better performance on typhoon intensity and landfall time than WSM6_31. Besides, WDM6_31 also had better TSs and ETSs in 24-hour accumulated precipitation. In experiment ii), varying the vertical resolution had a small effect on typhoon precipitation maximum, intensity and landfall time simulation. No matter for 24-hour or 6-hour accumulated precipitation, WDM6_mix45 had the best performance among three simulations. Because of the finer vertical resolution in mid-to-upper layers, WDM6_mix45 avoided the unreasonable vertical velocity and radar reflectivity in upper layers. At the same time, WDM6_mix45 revealed the break down process of typhoon eye, which reduced typhoon intensity efficiently then lowered the overestimation of precipitation maximum in other simulations.
In experiment iii), Thompson_31, Morrison_31, Milbrandt and Yau_31 runs improved the positive bias for WDM6_31 run on radar reflectivity and precipitation maximum. On August 8th, Milbrandt and Yau_31 run had the smallest BIAS-1 value. While applying the statistics scores, the users should pay attention to the deficiencies of the scores, which could mislead the ability of model’s precipitation predicbility. On the vertical crosssection over terrain, WDM6_31 tended to produce more raindrops, Thompson_31 tended to produce more snows, whereas Milbrandt and Yau_31 tended to produce more ice flakes. It was the difference of original designs for every schemes that made the difference of precipitation simulations.
參考文獻
周仲島、李清勝、鄭明典、鳳雷、于宜強,2010:「莫拉克颱風綜觀環境與降雨
特徵分析」,莫拉克颱風科學報告。
簡芳菁、蕭育琪、周仲島、林沛練、楊明仁、洪景山、鄧仁星、林慧娟,2003:
「MM5系集降水預報之校驗」,大氣科學,31,77–93。
傅佑瑜,2008:2005年台灣地區季節性降雨之特徵及颱風事件之逕流模擬, 中央大
學水文科學研究所碩士論文。
錢伊筠, 2010: WRF 模式Double-moment 雲微物理參數化法對於SoWMEX
IOP-4 個案降水模擬之敏感度研究,中央大學大氣物理研究所碩士論
文。
周俊宇,2012:西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較,中央大學大氣物理研究所碩士論文。
Brandes, E. A., K. Ikeda, G. Zhang, M. Schonhuber, and R. M.Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634–650.
Chang, S. W. J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea.Rev., 110, 1255–1270.
Chiao, S., Y.-L. Lin, 2003: Numerical Modeling of an Orographically Enhanced Precipitation Event Associated with Tropical Storm Rachel over Taiwan. Wea. Forecasting, 18, 325–344.
Dawson, D. T., II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 1152–1171.
Huang, H. L., M.-J. Yang, C.-H. Sui, 2014: Water Budget and
Precipitation Efficiency of Typhoon Morakot (2009). J. Atmos. Sci.,71,112–129.
J.R. Picardo and S. Ghosh ,2011 :Removal Mechanisms in a Tropical Boundary Layer: Quantification of Air Pollutant Removal Rates Around a Heavily Afforested Power Plant Air Pollution – New Developments.,ch13,275-303.
Kim, J. H., D. B. Shin, C. Kummerow, 2013: Impacts of A Priori Databases Using Six WRF Microphysics Schemes on Passive Microwave Rainfall Retrievals. J. Atmos. Oceanic Technol., 30, 2367–2381.
Kimball, S. K., and F. C. Dougherty, 2006: The sensitivity of idealized hurricane structure and development to the distribution of vertical levels in MM5. Mon.Wea. Rev., 134,1987–2008.
K.-S. S. Lim and S.-Y. Hong 2010: Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Wea. Rev.,138, pp. 1587–1612,
Lee, S. S., and L. J. Donner 2011: Effects of Cloud Parameterization on Radiation and Precipitation: A Comparison Between Single-Moment Microphysics and Double-Moment Microphysics . Terr. Atmos. Ocean. Sci.,22-4, 403-420
Lindzen, R. S., and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal Resolution.Mon. Wea. Rev., 117, 2575–2583.
Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051-3064.
Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065-3081.
Milbrandt, J. A., and M. K. Yau, 2006: A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci., 63,3137–3159.
Morrison, H., J. A. Curry, V. I. Khvorostyanov, 2005: A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. J. Atmos. Sci., 62, 1665–1677.
Morrison, H., J. A. Curry, M. D. Shupe, P. Zuidema, 2005: A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part II: Single-Column Modeling of Arctic Clouds. J. Atmos. Sci., 62, 1678–1693.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991–1007.
Morrison,H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 1103-1130.
Roy, S. S.; Datta, R. K.; Bhatia R. C. & Sharma A. K. 2005 :Drop Size Distributions of Tropical Rain over South India. Geofizika, Vol. 22, pp. 105-130
Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci., 53, 980–1006.
Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542.
Thompson, G., R. M. Rasmussen, and K. Manning, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.Part II: Implementation of a new snow parameterization. Mon.Wea.Rev., 136, 5095–5115.
Um, J. and McFarquhar, G. M.: Single-scattering properties of aggregates of bullet rosettes in cirrus, J. Appl. Meteorol. Clim., 46, 757–775, 2007.
Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67–80.
Yang, M.-J., and Q.-C. Tung (2003), Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes, J. Meteorol. Soc. Jpn., 81, 1163– 1183
Yang, M.-J., and Q.-C. Tung, 2003: Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J. Meteor. Soc. Japan, 81, 1163-1183
Zhang, D.-L., and X. Wang, 2003: Dependence of hurricane intensity and structures on vertical resolution and time-step size. Adv. Atmos. Sci., 20, 711-725.
Zhang, D.-L., L. Zhu, X. Zhang, and V. Tallapragada 2014: Sensitivity of Idealized Hurricane Intensity and Structures Under Varying Background Flows and Initial Vortex Intensities to Different Vertical Resolutions in HWRF. Mon. Wea. Rev., submitted.