| 研究生: |
黃柏程 Bo-Chen Huang |
|---|---|
| 論文名稱: |
含聯噻吩之環釕金屬染料的設計與合成並應用於染料敏化太陽能電池 |
| 指導教授: | 吳春桂 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 環釕金屬 、染料敏化太陽能電池 、聯噻吩 |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染料敏化太陽能電池 (Dye Sensitized Solar Cell, 簡稱 DSC ) 因成本低廉、製造簡易、色彩多樣化及室內弱光高效率發電的特性,具有發展的潛力。實驗室合成出的染料DUY29有不錯的光伏表現,然而卻仍有兩個缺點:DUY29有高的HOMO能階,不利電解質還原染料;DUY29染料因體積大,在TiO2膜上有低的吸附量,導致元件有低的Jsc值。本研究以DUY29結構為基礎,用dithieno[3,2-b:2’,3’-d] thiophene (簡稱tThp) 取代DUY29中的 thieno-[2,3-b]thiophene (簡稱cis-fThp) 輔助配位基,降低所合成環金屬錯合物的HOMO能階,合成出HBC30;以Thiophene 取代DUY29的 cis-fThp與2,3-dihydro-thieno-[3,4-b][1,4]dioxine (簡稱EDOT),分別合成出HBC23和HBC31,可縮小錯合物體積。HBC23、HBC30與HBC31 (簡稱HBC系列染料)和實驗室所合成之DUY28與DUY29 (簡稱DUY系列)染料的HOMO能階由高到低為:DUY29 > HBC31 > HBC23 > DUY28 > HBC30。其中HBC23雖然HOMO能階不是最低的,但有最高的染料吸附量,所敏化之元件能將光更有效的轉換成電流,因此元件有最高的光電轉換效率,達8.62%。
Dye sensitized solar cell (DSC) is known for its low cost, great variety of colors and high efficiency under dim-light condition. Our Lab members previously had synthesized cycloruthenated sensitizer coded DUY29, which performs good photovoltaic properties, but has two drawbacks: First, DUY29’s has high HOMO potential which is unfavorable for dye regeneration; Second, the dye-loading on TiO2 thin film is small due to its large molecular size, resulting in a low short-curcuit current density (Jsc). This work intends to develop high efficient dyes based on DUY29. We replace thieno-[2,3-b]thiophene (cis-fThp) with the dithieno[3,2-b:2’,3’-d] thiophene (tThp) on DUY29 for lowering the HOMO potential to form HBC30; replace cis-fThp with thiophene (Th) or 2,3-dihydro-thieno-[3,4-b][1,4]dioxine (EDOT) with thiophene for decreasing the molecule size to form HBC23 and HBC31, respectively. Compared with the previously prepared DUY28 and DUY29 (DUY series) dyes. The order of the HOMO potential is DUY29 > HBC31 > HBC23 > DUY28 > HBC30. Although the HOMO potential of HBC23 is not the lowest, the dye loading (on TiO2 thin film) is the highest, resulting in the highest Jsc of DSC device. As a result, the power conversion efficiency of HBC23 sensitized solar cell is the highest, reaching 8.62 %.
[1] A. Aslam, U. Mehmood, M. H. Arshad, A. Ishfaq, J. Zaheer, A. U. Khan, M. Sufyan, “Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications”, Solar Energy, 2020, 207, 874-892
[2] C. Fritts, “On the Fritts selenium cell and batteries”, Van Nostrands Engineering Magazine, 1885, 32, 388-395.
[3] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. H. Ebinger, M. Yoshita, A. W. Y. H. Baillie, "Solar cell efficiency tables (version 56)", Prog. Photovolt. Res. Appl., 2020, 28, 629-638.
[4] N. Sridhar and D. Freeman, “A Study of Dye Sensitized Solar Cells under Indoor and Low Level Outdoor Lighting: Comparison to Organic and Inorganic Thin Film Solar Cells and Methods to Address Maximum Power Point Tracking”, Texas Instruments, 2011, 1-5.
[5] N. Tomara, A. Agrawal, V. S. Dhaka, P. K. Surolia, “Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends”, Solar Energy, 2020, 207, 59-76.
[6] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, "Counter electrodes in dye-sensitized solar cells", Chem. Soc. Rev. 2017, 46, 5975-6023.
[7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell", Nature, 1976, 261, 402-403.
[8] B. Regan and M. Grätzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature, 1991, 353, 737-740.
[9] S. Yun, P. D. Lund and A. Hinsch, "Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells" Energy Environ. Sci. 2015, 8, 3495-3514.
[10] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes", Chem. Commun., 2015, 51, 15894-15897.
[11] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Grätzel, C. G. Wu and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells" ACS Nano, 2009, 3, 3103-3109.
[12] S. Mathew, A. Yelia, P. Gao, R. H. Baker, B. F. Curchod, N. A. Astani, I. Tavemelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers" Nat. Chem., 2014, 6, 242-247.
[13] W. Shockley, J. H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys., 1961, 32, 510-519.
[14] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, “Dye-sensitized solar cells”, Chem. Rev., 2010, 110, 6595-6663.
[15] N. Vlachopoulos, P. Liska, J. Augustynski, M. Graetzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am.Chem. Soc., 1988, 110, 1216-1220.
[16] M. K. Nazeeruddin, I. R. A. Kay, R. H. Baker, P. L. E. Mueller, N. Vlachopoulos and M. Grätzel, "Conversion of light to electricity by cis-X2bis (2,2-bipyridyl-4,4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes", J. Am. Chem. Soc., 1993, 115, 6382-6390.
[17] M. K. Nazeeruddin, R. H. Baker, P. Liska, and M. Grätzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell", J. Phys. Chem. B, 2003, 707, 8981-8987;
[18] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photo-electrochemical cell ruthenium sensitizers", J. Am. Chem. Soc., 2005, 727, 16835-16847.
[19] H. T. Nguyen, H. M. Ta, T. Lund, “Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine” Solar Energy Materials & Solar Cells, 2007, 91, 1934-1942.
[20] J.-F. Yina, M. Velayudhama, D. Bhattacharyaa, H.-C. Linb, K.-L. Lu “Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells - a goal toward a bright future”, Coordination Chemistry Reviews, 2012, 256, 3008-3035.
[21] M. Hussain, A. Islam, I. Bedja, R. K. Gupta, L. Han, A. El-Shafei, “A comparative study of Ru(II) cyclometallated complexes versus thiocyanated heteroleptic complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how low could it be? ”, Phys. Chem. Chem. Phys., 2014, 16, 14874-14881.
[22] P.G. Bomben, B.D. Koivisto, C.P. Berlinguette, “Cyclometalated Ru Complexes of Type [RuII(N∧N)2(C∧N)]z Physicochemical Response to Substituents Installed on the Anionic Ligand”, Inorg. Chem., 2010, 49, 4960.
[23] P. G. Bomben, K. C.D. Robson, B. D. Koivisto, C. P. Berlinguette, “Cyclometalated ruthenium chromophores for the dye-sensitized solar cell”, Coordination Chemistry Reviews, 2012, 256, 1438-1450.
[24] Nguyen The Duy, “Thiocyanate-Free Cycloruthenated Sensitizer for Dye-Sensitized Solar Cells”, NCU, doctoral thesis, 2018
[25] T. D. Nguyen, Y. P. Lan, and C. G. Wu, “High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells”, Inorg. Chem., 2018, 57, 1527-1534.
[26] P. G. Bomben, K. C. D. Robson, P. A. Sedach, and C. P. Berlinguette, “On the Viability of Cyclometalated Ru(II) Complexes for Light-Harvesting Applications”, Inorg. Chem., 2009, 48, 9631-9643.
[27] A.V. Medved'ko, V.K. Ivanov, M.A. Kiskin, A.A. Sadovnikov, E.S. Apostolova, V.A. Grinberg, V.V. Emets, A.O. Chizhov, O.M. Nikitin, T.V. Magdesieva, S.A. Kozyukhin, “The design and synthesis of thiophene-based ruthenium(II) complexes as promising sensitizers for dye-sensitized solar cells”, Dyes and Pigments, 2017, 140, 169-178.
[28] M. Wykes,B. M.-Medina and J. Gierschner, “Computational engineering of low band gap copolymers”, Frontiers in Chemistry, 2013, 1, 1-11.
[29] M. Megala and B. J. M. Rajkumar, “DFT Study of Electronic Transfer Properties of Carboxyl and Nitro Substituted Benzene”, AIP Conference Proceedings, 2015, 1665, 110045.
[30] S. Xu, Z. Zhou, H. Fan, L. Ren, F. Liu, X. Zhu and T. P. Russellde, “An electron-rich 2-alkylthieno[3,4-b]thiophene building block with excellent electronic and morphological tunability for high-performance small-molecule solar cells”, J. Mater. Chem. A, 2016, 4, 17354.
[31] F. Dikcal, T. Ozturk and M. E. Cinar, “Fused thiophenes: an overview of the computational investigations”, Org.Commun., 2017, 10, 56-71.
[32] C. S. Ra, S.u Yim, and G. Park, “DFT Studies of Band Gaps of the Fused Thiophene Oligomers”, Bull. Korean Chem. Soc. 2008, 29, 891.
[33] B. L. Hayes “Recent Advances in Microwave Assisted Synthesis.” Aldricchem. Aceta., 2004, 17, 65-76.
[34] D. V. Pogozhev, M. J. Bezdek, P. A. Schauer, and C. P. Berlinguette, “Ruthenium(II) Complexes Bearing a Naphthalimide Fragment: A Modular Dye Platform for the Dye-Sensitized Solar Cell”, Inorg. Chem., 2013, 52, 3001-3006.
[35] Y. Zhou, Q. He, Y3 Yang, H. Zhong, C. He, G. Sang, W. Liu, C. Yang,F. Bai, and Y. Li, “Binaphthyl-Containing Green- and Red-Emitting Molecules for Solution-Processable Organic Light-Emitting Diodes”, Adv. Funct. Mater., 2008, 18, 3299-3306.
[36] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, phys. stat. sol., 1966, 15, 627-637.
[37] E. A Davis, N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Philos. Mag., 1970, 22, 903-922.
[38] L. G. Oktariza, B. Yuliarto, and Suyatman, “Performance of dye sensitized solar cells (DSSC) using Syngonium Podophyllum Schott as natural dye and counter electrode”, AIP Conference Proceedings, 2018, 020022, 1-5
[39] S. Malladi, S. Yarasi, and G. N. Sastry, “Exploring the potential of iron to replace ruthenium in photosensitizers:a computational study”, J. Mol. Model., 2018, 24, 341.
[40] B. Gunasekaran, R. Sureshbabu, A. K. Mohanakrishnan,G. Chakkaravarthi and V. Manivannan, “Diethyl 3,4-bis(acetoxymethyl)thieno-[2,3-b]thiophene-2,5-dicarboxylate”, Acta Cryst., 2009, 65, 2455.
[41] S. H. Mashraqui, M. Ashraf, H. Hariharasubrahmanian, R. M. Kellogg, A. Meetsma, “Donor–acceptor thieno[2,3-b ]thiophene systems: synthesis and structural study of 3-anisyl-4-pyridyl(pyridinium) thieno[2,3-b ]thiophenes”, Journal of Molecular Structure, 2004, 689, 107-113.