| 研究生: |
陳景羣 Ching-chun Chen |
|---|---|
| 論文名稱: |
電化學分解水之電極材料製備與效率探討 The Preparing and The Study of Efficiency of Electrodes’ Materials of Electrochemical Water Electrolysis |
| 指導教授: |
李岱洲
Tai-chou Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 電極 、電解水 、產氫 |
| 外文關鍵詞: | Electrode, water electrolysis, hydrogen evolution |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氫能是個乾淨又環保的能源,同時具備有高能量的密度,由於氫氣燃燒過後的產物僅為水,在現今石油價錢持續攀升的處境,許多國家期望氫能能夠替代現在的石化能源。電解水(water electrolysis)是一種目前較為成熟的產氫的技術,只是在電解水的過程中會消耗大量的電能,所以如何提升效率是個當前重要的課題。
提升效率有多種方法,本文欲其電極材料結構之表面積增加,利用不鏽鋼網本身的孔洞以及在鎳板上鋪PS球產生孔洞等兩種方法製作電極材料,比較兩種提升電解水效率的方法。
本實驗中分為兩個部分,第一部分以不鏽鋼網當作基材做為材料,再以鎳(Ni)、鈷(Co)和鎳、鐵(Fe)以共沉積方法沉積在其表面,並以5%氫氣環境下燒結還原。第二部分以鎳板作為基材,將Polystyrene particles (PS)利用spin coating的方式鋪在基材表面,再利用共沉積和大氣下燒掉PS球並再通氫燒結還原,最後分別進行XRD、SEM等材料分析、電化學分析和電解水產氫。
Hydrogen is a clean and green energy, and it has high energy density. Recently, the price of oil becomes higher and higher, so many countries hope fossil energy will be in place of hydrogen energy because of water only after burning. Water electrolysis is one of ripe skills for hydrogen evolution but it consumes a lot of electric energy. Therfore, how to rise the efficiency of water electrolysis is an important issue nowadays.
There are many ways of rising the efficency. In this study, we prepare the electrodes using by stainless steel mesh and the porous structure of nickel substrate resulting from PS paricles to increase the surface area of electrodes. Then, we compare the efficiency between the two ways.
In this study, we have two parts of experiment. The first part, we use stainless steel mesh as substrate, and co-deposite nickel(Ni), colbalt(Co) and nickel, iron(Fe) on substrates respectively, then sintering in 5% hydrogen enviroment. The second part, we use spin coating to coat PS particles on nickel substrate, and burning in the air, and then sintering in 5% hydrogen enviroment. We do materials analyzing by SEM and XRD, and electrochemical analyzing, and hydrogen evolution.
[1] S. Dunn, "Hydrogen futures: toward a sustainable energy system," International Journal of Hydrogen Energy, vol. 27, pp. 235-264, 2002.
[2] R. Mosdale and S. Srinivasan, "Analysis of performance and of water and thermal management in proton exchange membrane fuel cells," Electrochimica Acta, vol. 40, pp. 413-421, 1995.
[3] J. A. Turner, "A Realizable Renewable Energy Future," Science, vol. 285, pp. 687-689, July 30, 1999 1999.
[4] D. K. Detlef Stolten, Michael Weber, "An Overview on Water Electrolysis," 2010.
[5] A. Ursua, L. M. Gandia, and P. Sanchis, "Hydrogen Production From Water Electrolysis: Current Status and Future Trends," Proceedings of the IEEE, vol. 100, pp. 410-426, 2012.
[6] X. Li, F. C. Walsh, and D. Pletcher, "Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers," Physical Chemistry Chemical Physics, vol. 13, pp. 1162-1167, 2011.
[7] N. Nagai, M. Takeuchi, T. Kimura, and T. Oka, "Existence of optimum space between electrodes on hydrogen production by water electrolysis," International Journal of Hydrogen Energy, vol. 28, pp. 35-41, 2003.
[8] M. S. Casper, Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques, 1978, 1978.
[9] Z. Shan, Y. Liu, Z. Chen, G. Warrender, and J. Tian, "Amorphous Ni–S–Mn alloy as hydrogen evolution reaction cathode in alkaline medium," International Journal of Hydrogen Energy, vol. 33, pp. 28-33, 2008.
[10] Q. Han, K. Liu, J. Chen, X. Li, and X. Wei, "Study of amorphous Ni–S–Co alloy used as hydrogen evolution reaction cathode in alkaline medium," International Journal of Hydrogen Energy, vol. 29, pp. 243-248, 2004.
[11] Q. Han, J. Chen, K. Liu, X. Li, and X. Wei, "The heat-treatment effect of amorphous Ni–S(La) electrode on the hydrogen evolution reaction in an alkaline media," International Journal of Hydrogen Energy, vol. 29, pp. 597-603, 2004.
[12] Q. Han, J. Chen, K. Liu, and X. Wei, "Preparation and electrochemical properties of composite LaNix/Ni–S–Co alloy film," International Journal of Hydrogen Energy, vol. 33, pp. 4495-4500, 2008.
[13] Q. Han, Y. Jin, N. Pu, K. Liu, J. chen, and X. Wei, "Electrochemical evolution of hydrogen on composite La–Ni–Al/Ni–S alloy film in water electrolysis," Renewable Energy, vol. 35, pp. 2627-2631, 2010.
[14] Q. Han, K. Liu, J. Chen, and X. Wei, "Preparation of the composite LaNi3.7Al1.3/Ni–S–Co alloy film and its HER activity in alkaline medium," International Journal of Hydrogen Energy, vol. 34, pp. 71-76, 2009.
[15] C. Lupi, A. Dell'Era, and M. Pasquali, "Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media," International Journal of Hydrogen Energy, vol. 34, pp. 2101-2106, 2009.
[16] R. Solmaz, A. Döner, İ. Şahin, A. O. Yüce, G. Kardaş, B. Yazıcı, and M. Erbil, "The stability of NiCoZn electrocatalyst for hydrogen evolution activity in alkaline solution during long-term electrolysis," International Journal of Hydrogen Energy, vol. 34, pp. 7910-7918, 2009.
[17] I. Herraiz-Cardona, E. Ortega, and V. Pérez-Herranz, "Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits," Electrochimica Acta, vol. 56, pp. 1308-1315, 2011.
[18] C. G.-B. I. Herraiz-Cardona, E. Ortega, V. Pérez-Herranz, J. García-Antón, "Porous Ni and Ni-Co Electrodeposits for Alkaline Water Electrolysis – Energy Saving," World Academy of Science, Engineering and Technology, pp. 1879-1885, 2012.
[19] R. Solmaz, A. Döner, and G. Kardaş, "The stability of hydrogen evolution activity and corrosion behavior of NiCu coatings with long-term electrolysis in alkaline solution," International Journal of Hydrogen Energy, vol. 34, pp. 2089-2094, 2009.
[20] R. Solmaz, A. Döner, and G. Kardaş, "Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution," International Journal of Hydrogen Energy, vol. 35, pp. 10045-10049, 2010.
[21] C.-C. Hu and Y.-R. Wu, "Bipolar performance of the electroplated iron–nickel deposits for water electrolysis," Materials Chemistry and Physics, vol. 82, pp. 588-596, 2003.
[22] H. B. Suffredini, J. L. Cerne, F. C. Crnkovic, S. A. S. Machado, and L. A. Avaca, "Recent developments in electrode materials for water electrolysis," International Journal of Hydrogen Energy, vol. 25, pp. 415-423, 2000.
[23] F. J. Pérez-Alonso, C. Adán, S. Rojas, M. A. Peña, and J. L. G. Fierro, "Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium," International Journal of Hydrogen Energy, vol. 39, pp. 5204-5212, 2014.
[24] R. P. Silva, S. Eugénio, T. M. Silva, M. J. Carmezim, and M. F. Montemor, "Fabrication of Three-Dimensional Dendritic Ni–Co Films By Electrodeposition on Stainless Steel Substrates," The Journal of Physical Chemistry C, vol. 116, pp. 22425-22431, 2012/10/25 2012.