| 研究生: |
石泰光 Tai-Guang Shih |
|---|---|
| 論文名稱: |
壓力效應對奈秒重覆脈衝放電引燃機率之影響 The Effect of Pressure on The Ignition Probability of Nanosecond Repetitive Pulse Discharge |
| 指導教授: |
施聖洋
Shenq-Yang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 奈秒重覆脈衝放電引燃 、引燃機率量測 、壓力效應 、能量加乘效應 、引燃延遲時間 、層流火焰速度 |
| 外文關鍵詞: | Nanosecond repetitively pulsed discharges, Ignition probability, Pressure effect, Synergistic effect, Ignition delay time, Laminar burning velocity |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討壓力效應(1 ~ 5 atm)對於奈秒重覆脈衝放電(NRPD)之引燃機率(Pig)的影響。實驗在一個大型雙腔體風扇擾動十字型燃燒爐中進行,其中心處配置了一對固定電極間距(dgap = 0.8 mm)之不鏽鋼尖端探針,搭配NRPD以脈衝重覆頻率(PRF = 1 ~ 80 kHz),引燃預混貧油正丁烷/空氣之混合物( = 0.7,有效Lewis數Le ≈ 2.2 >> 1)。首先,我們使用傳統火花放電引燃(CSSD)系統,透過邏輯回歸方法計算出50%引燃機率時的層流最小引燃能量(MIEL),其中MIEL在1、2、3 atm條件下,分別為23、10、6 mJ,隨壓力增加,MIEL值會下降。我們以CSSD所得之MIEL值作為NRPD之基準,以累積總能量Etot = 23.7 ± 1 (NP = 11個脈衝波於1 atm)、10.2 ± 0.4 mJ (Np = 5個脈衝波於2 atm)、5.5 ± 0.2 mJ (Np = 3個脈衝波於3 atm)進行NRPD引燃機率量測實驗。經量測後得知,NRPD的第一個脈衝波能量約為0.8 mJ,而從第二個脈衝波開始,能量均約為2.3 mJ。結果顯示:當以Etot ≈ MIEL進行實驗,在PRF = 1 ~ 10 kHz時,Pig = 0,即使是使用NP = 100個脈衝波(Etot ≈ 230 mJ),引燃仍為0。最高的Pig值,發生在PRF = 40 kHz,其相對應之Pig = 92%/70%/48%,當p = 1/2/3 atm。而當PRF > 40 kHz時,三個壓力的Pig值都會隨著PRF增加而降低,顯示NRPD能量加乘效應僅會發生在特定PRF = 40 kHz,太低或太高PRF均不利於引燃。若以固定Etot ≈ 23 mJ於1、3、5 atm條件下進行NRPD實驗,結果顯示:Pig在給定的PRF條件下,皆會隨著壓力上升而增加,且於高壓條件(p = 3、5 atm),當PRF ≥ 20 kHz時,Pig皆為100%,這是因為MIEL值會隨壓力升高而降低,故同樣Etot在高壓時,較易引燃。此外,CSSD與NRPD兩個不同引燃系統之引燃延遲時間τRmin皆隨著壓力的升高而減少。其中τRmin定義為在火核發展過程中,從引燃至最小火焰半徑(Rmin)所需的時間。最後,我們測量了層流燃燒速度(SL),其值隨著壓力增加而降低,且SL ~ p-0.35,SL與引燃系統和PRF無關。本研究對未來使用NRPD於高壓環境之引燃,如汽車引擎和燃氣輪機應有所助益。
This thesis investigates how exactly the ignition probability (Pig) of nanosecond repetitively pulsed discharges (NRPD) would vary with a change of pressure (1 ~ 5 atm) by using a pair of stainless-steel cantilevered electrodes with sharp ends. We apply the lean n-butane/air mixture at the equivalent ratio = 0.7 with on effective Lewis number Le ≈ 2.2 >> 1 using a fixed inter-electrode gap (dgap = 0.8 mm) over a wide range of pulsed repetitive frequency (PRF = 1-80 kHz) in a dual-chamber, fan-stirred explosion facility. First, we measure values of the laminar minimum ignition energy (MIEL) at 50% ignitability via the logistic regression method by using the conventional single-shot discharges (CSSD), where MIEL ≈ 23/10/6 mJ at 1/2/3 atm, respectively. Then we apply these values of MIEL measured by CSSD at three different pressures (1, 2, 3 atm) as a baseline for NRPD studies, in which the NRPD cumulative total energy Etot = 23.7 ± 1 mJ at 1 atm (Np = 11 pulses), 10.2 ± 0.4 mJ at 2 atm (Np = 5 pulses), 5.54 ± 0.2 mJ at 3 atm (Np = 3 pulses). Note that each NRPD pulse has 2.3 mJ except for the first pulse having 0.8 mJ. NRPD’s experimental results in quiescence are as follow. When Etot ≈ MIEL, Pig = 0 for PRF = 1-10 kHz even when Np = 100 pulses with Etot 230 mJ are used. The synergistic effect occurs at PRF = 40 kHz with the maximum Pig (i.e. Pig = 92%/70.7%/48% at 1/2/3 atm, respectively). As PRF > 40 kHz, Pig decreases for all three pressurs; too high PRFs are detrimental for ignition. The other data set of ignition experiments is obtained conducted at a fixed Etot ≈ 23 mJ for these three different pressures (1, 3, 5 atm). Results show that values of Pig increase with increasing pressure at any given values of PRF. Especially at 3 and 5 atm, Pig reaches 100% when PRF ≥ 20 kHz. The reason is because the decrease of MIEL with increasing pressure. As such, using the same Etot is easier to ignite at high pressure. Furthermore, the ignition delay times (τRmin) of both CSSD and NRPD decrease with increasing pressure, where τRmin is defined as the lapse of the flame kernel formation from ignition to a minimum flame radius (Rmin). Finally, we measure the laminar burning velocity (SL) that decreases with increasing pressure having a power law relation of SL ~ p-0.35, independent of ignition sources, energy, and PRF. These results may be of help for the ignition strategy when using NRPD in automobile engines and gas turbines in the future.
[1] World Energy Outlook 2020, International Energy Agency, Paris, France (2020).
[2] R.C. Costa, J.R. Sodré, Compression ratio effects on an ethanol/gasoline fuelled engine performance, Appl. Therm. Eng. 31 (2011) 278-283.
[3] D. Jung, K. Sasaki, N. Iida, Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation, Appl. Energy 205 (2017) 1467-1477.
[4] O. Kurata, N. Iki, T. Matsunuma, T. Inoue, T. Tsujimura, H. Furutani, H. Kobayashi, A. Hayakawa, Performances and emission characteristics of NH3–air and NH3–CH4–air combustion gas-turbine power generations, Proc. Combust. Inst. 36 (2017) 3351-3359.
[5] Y. Ju, W. Sun, Plasma assisted combustion: Dynamics and chemistry, Prog. Energy Combust. Sci. 48 (2015) 21-83.
[6] X. Mao, A. Rousso, Q. Chen, Y. Ju, Numerical modeling of ignition enhancement of CH4/O2/He mixtures using a hybrid repetitive nanosecond and DC discharge, Proc. Combust. Inst. 37 (2019) 5545-5552.
[7] G. Faingold, J.K. Lefkowitz, A numerical investigation of NH3/O2/He ignition limits in a non-thermal plasma, Proc. Combust. Inst. 38 (2021) 6661-6669.
[8] G. Pilla, D. Galley, D.A. Lacoste, F. Lacas, D. Veynante, C.O. Laux, Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma, IEEE Trans. Plasma Sci. 34 (2006) 2471-2477.
[9] B. Wolk, A. DeFilippo, J.Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber, Combust. Flame 160 (2013) 1225-1234.
[10] S. Lovascio, T. Ombrello, J. Hayashi, S. Stepanyan, X. Da, G.D. Stancu, C.O. Laux, Effects of pulsation frequency and energy deposition on ignition using nanosecond repetitively pulsed discharges, Proc. Combust. Inst. 36 (2017) 4079-4086.
[11] F. Tholin, D.A. Lacoste, A. Bourdon, Influence of fast-heating processes and O atom production by a nanosecond spark discharge on the ignition of a lean H2–air premixed flame, Combust. Flame 161 (2014) 1235-1246.
[12] M.T. Nguyen, S.S. Shy, Y.R. Chen, B.L. Lin, S.Y. Huang, C.C. Liu, Conventional spark versus nanosecond repetitively pulsed discharge for a turbulence facilitated ignition phenomenon, Proc. Combust. Inst. 38 (2021) 2801-2808.
[13] 林柏良,奈秒重覆脈衝放電之引燃機率量測於一預混貧油正丁烷/空氣燃氣: 電極間距、重覆脈衝頻率和紊流效應,國立中央大學機械工程研究所,碩士論文,2020。
[14] M. Zhou, G. Li, J. Liang, H. Ding, Z. Zhang , Effect of ignition energy on the uncertainty in the determination of laminar flame speed using outwardly propagating spherical flames, Proc. Combust. Inst. 37 (2019) 1615-1622.
[15] A.P. Kelley, C.K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combust. Flame 156 (2009) 1844-1851.
[16] B. Lewis, G. Von Elbe, Combustion flames and explosive of gases, Third Edition, Academic Press, New York, 1987.
[17] I.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, Mathematical theory of combustion and explosions, Consultants Bureau, New York, NY, United States, 1985.
[18] Z. Chen, M.P. Burke, Y. Ju, On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc. Combust. Inst. 33 (2011) 1219-1226.
[19] S.P.M. Bane, Spark ignition: Experimental and numerical investigation with application to aviation safety, California Institute of Technology, Ph.D. thesis, 2010.
[20] M. Kono, K. Hatori, K. Iinuma, Investigation on ignition ability of composite sparks in flowing mixtures, Symp. (Int.) Combust. 20 (1985) 133-140.
[21] C.C. Huang, S.S. Shy, C.C. Liu, Y.Y. Yan, A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc. Combust. Inst. 31 (2007) 1401-1409.
[22] S.S. Shy, W.T. Shih, C.C. Liu, More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes, Combust. Sci. Technol. 180 (2008) 1735–1747.
[23] S.S. Shy, C.C. Liu, W.T. Shih, Ignition transition in turbulent premixed combustion, Combust. Flame 157 (2010) 341-350.
[24] M.W. Peng, S.S. Shy, Y.W. Shiu, C.C. Liu, High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust. Flame 160 (2013) 1755-1766.
[25] Y. Kobayashi, S. Nakaya, M. Tsue, Laser-induced spark ignition for DME–air mixtures with low velocity, Proc. Combust. Inst. 37 (2019) 4127-4135.
[26] Y. Kobayashi, T. Tsujino, S. Nakaya, M. Tsue, S. Takahashi, Laser-induced spark ignition of DME-air mixtures in microgravity: Comparison of ignition characteristics between normal gravity and microgravity, Fuel 236 (2019) 1391-1399.
[27] Y.P. Raizer, Gas Discharge Physics, Barcelona: Springer, 1991.
[28] M. Castela, B. Fiorina, A. Coussement, O. Gicquel, N. Darabiha, C.O. Laux, Modelling the impact of non-equilibrium discharges on reactive mixtures for simulations of plasma-assisted ignition in turbulent flows, Combust. Flame 166 (2016) 133-147.
[29] T. Ombrello, S.H. Won, Y. Ju, Skip Williams, Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2(a1Δg), Combust. Flame 157 (2010) 1916-1928.
[30] A. Starikovskiy, N. Aleksandrov, A. Rakitin, Plasma-assisted ignition and deflagration-to-detonation transition, Philos. Trans. R. Soc. A Math Phys. Eng. Sci. 370 (2012) 740-773.
[31] J.A.T. Gray, D.A. Lacoste, Enhancement of the transition to detonation of a turbulent hydrogen–air flame by nanosecond repetitively pulsed plasma discharges, Combust. Flame 199 (2019) 258-266.
[32] J.A.T. Gray, D.A. Lacoste, Effect of the plasma location on the deflagration-to-detonation transition of a hydrogen–air flame enhanced by nanosecond repetitively pulsed discharges, Proc. Combust. Inst. 38 (2021) 3463-3472.
[33] B. Wolk, A. DeFilippo, J.Y. Chen, R. Dibble, A. Nishiyama, Y. Ikeda, Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber, Combust. Flame 160 (2013) 1225-1234.
[34] J. Hwang, C. Bae, J. Park, W. Choe, J. Cha, S. Woo, Microwave-assisted plasma ignition in a constant volume combustion chamber, Combust. Flame 167 (2016) 86-96.
[35] I. Matveev, S. Matveeva, A. Gutsol, A. Fridman, Non-equilibrium plasma igniters and pilots for aerospace application, In: 43rd AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Reno, Nevada, 2005.
[36] G.T. Kim, B.H. Seo, W.J. Lee, J. Park, M.K. Kim, S.M. Lee, Effects of applying non-thermal plasma on combustion stability and emissions of NOX and CO in a model gas turbine combustor, Fuel 194 (2017) 321–328.
[37] J. Choe, W. Sun, T. Ombrello, C. Carter, Plasma assisted ammonia combustion: Simultaneous NOX reduction and flame enhancement, Combust. Flame 228 (2021) 430-432.
[38] S.V. Pancheshnyi, D.A. Lacoste, A. Bourdon, C.O. Laux, Ignition of propane–air mixtures by a repetitively pulsed nanosecond discharge, IEEE Trans. Plasma Sci. 34 (2006) 2478-2487.
[39] J.K. Lefkowitz, T. Ombrello, An exploration of inter-pulse coupling in nanosecond pulsed high frequency discharge ignition, Combust. Flame 180 (2017) 136-147.
[40] S.S. Shy, Y.R. Chen, B.L. Lin, A. Maznoy, Ignition enhancement and deterioration by nanosecond repetitively pulsed discharges in a randomly-stirred lean n-butane/air mixture at various inter-electrode gaps, Combust. Flame 231 (2021) 111506.
[41] J.K. Lefkowitz, S.D. Hammack, C. Carter, T. Ombrello, Elevated OH production from NPHFD and its effect on ignition, Proc. Combust. Inst. 38 (2021) 6671-6678.
[42] Z. Hong, D.F. Davidson, E.A. Barbour, R.K. Hanson, A new shock tube study of the H + O2 → OH + O reaction rate using tunable diode laser absorption of H2O near 2.5 μm, Proc. Combust. Inst. 33 (2011) 309-316.
[43] X. Yang, W. Liang, T. Tan, C.K. Law, Reevaluation of the reaction rate of H + O2 ( + M) = HO2 ( + M) at elevated pressures, Combust. Flame 217 (2020) 103-112.
[44] E.P. Dougherty, H. Rabitz, Computational kinetics and sensitivity analysis of hydrogen–oxygen combustion, J. Chem. Phys. 72 (1980) 6571-6586.
[45] 林彥廷,高溫高壓汽油主要參考燃料層流和紊流燃燒速度量測與正規化分析,國立中央大學機械工程研究所,碩士論文,2019。
[46] J. Hwang, C. Bae, J. Park, W. Choe, J. Cha, S. Woo, Microwave-assisted plasma ignition in a constant volume combustion chamber, Combust. Flame 167 (2016) 86-96.
[47] A. DeFilippo, Microwave-assisted ignition for improved internal combustion engine efficiency, University of California, Berkeley, Ph.D. thesis, 2013.
[48] N. Deak, A. Bellemans, F. Bisetti, Plasma-assisted ignition of methane/air and ethylene/air mixtures: Efficiency at low and high pressures, Proc. Combust. Inst. 38 (2021) 6551-6558.
[49] F.N. Egolfopoulos, C.K. Law, Chain mechanisms in the overall reaction orders in laminar flame propagation, Combust. Flame 80 (1999) 7-16.
[50] G. Jomaas, X.L. Zheng, D.L. Zhu, C.K. Law, Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures, Proc. Combust. Inst. 38 (2005) 193-200.
[51] Y. Cao, M. Dahari, I. Tlili, A. Raise, Investigation on the laminar flame speed of CH4/CO2/air mixture at atmospheric and high pressures using schlieren photography, Int. J. Hydrogen Energy 45 (2020) 31151-31161.