| 研究生: |
陳昭宇 Zhao-Yu Chen |
|---|---|
| 論文名稱: |
多頻段剖風儀雷達觀測結果之比對與分析 |
| 指導教授: |
朱延祥
Yen-Hsyang Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 剖風儀雷達 、速度方位顯示 、多頻段 、無線電探空儀 |
| 外文關鍵詞: | Wind Profiler Radar, Velocity Azimuth Display, Multi-Frequency, Radiosonde |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去幾十年間,剖風儀(Wind Profiler)雷達與Mesosphere-Stratosphere-Troposphere(MST)雷達除了大氣三維風場(3-Dimensional Wind Field)的觀測外,亦被廣泛應用於大氣亂流(Turbulence)、降雨(Precipitation)、層狀結構、大氣波動現象與動力等的觀測及研究。
本文為世界首次使用三個不同頻段剖風儀雷達於中央大學校園內做共同觀測實驗,雷達彼此位置相距約100m,使用三座剖風儀雷達頻段分別為VHF(52MHz)、UHF(449MHz)及L Band(1290MHz),其中L Band剖風儀雷達為一實驗型可移動式雷達,故資料來源為2017年9月12日至16日及2019年1月10日,文中主要比較不同剖風儀雷達觀測到之大氣三維風場,並利用Velocity Azimuth Display(VAD)的方法於計算,假設掃描期間風場不隨時間變化(Stationary)且於雷達體積內是均勻(Homogeneous)的。
結果顯示當無降水發生時,不同頻段剖風儀雷達所觀測到的大氣水平風場相當具有一致性,並討論不同高度覆蓋區間之關係比較,再與不同觀測方式之探空儀(Radiosonde)資料相比時,顯示部分時間點剖風儀雷達觀測到的水平風速與探空儀有明顯的系統性偏差,計算統計參數如相關係數、方均根差值、相對方均根差值、平均差值及其標準差,並利用本次結果與國外文獻做比較。討論當降水發生時,UHF及L Band頻段觀測到之大氣垂直速度會受降水回波影響,而無法真實計算出背景大氣垂直速度,但VHF頻段可利用其頻段特性,能將頻譜中大氣與降水訊號分離並做進一步分析,於是利用VHF剖風儀雷達比較了只需要傾斜波束的VAD法與使用垂直波束直接量測的垂直速度之間的差異於降水發生與無降水發生兩種情況下,最後將對不同頻段剖風儀雷達之都卜勒頻譜寬做比較並有些初步討論。
In the past decades, Wind Profiler and Mesosphere-Stratosphere-Troposphere Radars have been widely applied to observing and investigating atmospheric structure and dynamics, such as atmosphere three-dimensional wind field, turbulence, precipitation, layer structure and so on.
The paper presents the first time in the world using three different wind profiler radars with different operating frequencies, i.e., 52 MHz, 449 MHz, and 1290 MHz, to observe atmosphere three-dimensional wind field, which are co-located at the Chung-Li radar station site on the campus of National Central University. The 1290 MHz one is a transportable wind profiler radar, so the co-observation time is the period 12-16 September 2017 and 10 January 2019. The wind velocities are estimated by using velocity-azimuth-display (VAD) method that assumes the wind field is stationary or constant over time and is homogeneous or uniform across all antenna beams during scanning period.
The results appear that the wind velocities estimated by different radars tend to be consistent with one another in clear air, and discuss the comparison of different height coverage. However, discrepancies in the horizontal wind velocities between radar observations and radiosonde in-situ measurements are seen. The statistical parameters, i.e., correlation, root-mean-square difference, relative root-mean-square difference, mean and standard deviation of difference, between the different sets of the data are calculated to compare with some earlier studies. It is also discussed that when precipitation occurs, the vertical velocities observed by UHF and L Band radars are affected by the precipitation echo, so atmospheric vertical velocities cannot be calculated accurately. However, it can use the frequency characteristic of VHF radar to separate the radar echo between clear air turbulence and precipitation. A comparison of vertical velocities using VAD and directly measured methods in clear air and precipitation situations of VHF radar is also discussed. Finally, a preliminary discussion is made on the Doppler spectral width of different Wind Profiler Radars operating at different frequencies.
(1).Balsley, B. B. and K. S. Gage, 1980: “The MST radar technique: Potential for middle atmospheric studies”, Pure and Applied Geophys., Vol. 118, P. 452-493.
(2).Battan, L. J., 1973: “Radar observations of the atmosphere”, University of Chicago Press, Chicago, III, pp324.
(3).Booker, H. G. and Gordon, W. E., 1950: “A theory of radio scattering in the troposphere”, Proc. IRE 38:401-412.
(4).Browning, K. A. and Wexler, R., 1968: “The determination of kinematic properties of a wind field using Doppler radar”, J. Appl. Meteorol., 7, 105–113.
(5).Chen, M. Y. and Y. H. Chu, 2011: Beam broadening effect on Doppler spectral width of wind profiler, Radio Sci., Vol. 46, No. RS5013, p1-11.
(6).Chilson, P. B., C. W. Ulbrich, and M. F. Larsen, 1993: “Observation of a tropical thunderstorm using a vertically pointing, dual-frequency, collinear beam Doppler radar”, J. Atmos. Oceanic Technol., 10, 663-673.
(7).Chu, Y. H., and L. P. Chian, 1991: “The investigation of the atmospheric precipitations by using Chung-Li VHF Radar”, Radio Sci., 26, 717-729.
(8).Chu, Y. H., and C. H. Lin, 1994: “The severe depletion of turbulent echo power in association with precipitation observed by using Chung-Li VHF Radar”, Radio Science, 29, 1311-1320.
(9).Chu, Y. H., T. Y. Chen, T. H. Lin, 1997: “An examination of the wind-driven on the drift of precipitation particles using the Chung-Li VHF Radar”, Radio Science, 3 2, 957-966.
(10).Chu, Y. H., and J. S. Song, 1998: “The observation of precipitation associated with cold front using VHF wind profiler and ground-based optical raingauge”, Journal of geophysical research, 103, 11401-11409.
(11).Chu, Y. H., S. P. Shih, C. L. Su, K. L. Lee, T. H. Lin, and W. C. Liang, 1999: “A study on the relation between terminal velocity and VHF backscatter from precipitation particles using the Chung-Li VHF Radar”, J. Appl. Meteor., 38, 1720-1728.
(12).Chu, Y. H., 2002: Beam broadening effect on oblique MST radar Doppler spectrum, J. Atmos. Oceanic Technol., Vol. 19, p1955-1967.
(13).Cohn, S. A., R. K. Goodrich, C. S. Morse, E. Karplus, S. Mueller, L. B. Cornman, and R. A. Weekley, 2001:”Radial velocity and wind measurement with NIMA: Comparisons with human estimation and aircraft measurements”, J. Appl. Meteor., 40, 704–719.
(14).Dolman, B. K., Reid, I. M., Tingwell, C., 2018:”Stratospheric tropospheric wind profiling radars in the Australian network”, Earth, Planets and Space, 70:170.
(15).Friend, A. W., 1949: “Theory and practice of tropospheric sounding by radar”, Proc. IRE, 37, 116–138.
(16).Fukao, S., K. Lakasugi, T. Sato, S. Morimoto, T. Tsuda, I. Hirota, I. Ximura, and S. Kato, 1985: “Simultaneous observation of precipitation atmosphere by VHF and C/Ku Band Radars”, Radio Sci., 20, 622-630.
(17).Gage, K. S., and B. B. Balsley, 1980: “On the scattering and reflection mechanisms contributing to clear-air radar echoes from the troposphere, stratosphere, and mesosphere”, Radio Science, 1 5, 243-257.
(18).Gage, K. S., W. L. Ecklund, and B. B. Balsley, 1985: “A modified Fresnel scattering model for the parameterization of Fresnel returns”, Radio Science, 20, 1493-1501.
(19).Haefele, A., and D. Ruffieux, 2015: “Validation of the 1290 MHz wind profiler at Payerne, Switzerland, using radiosonde GPS wind measurements”, Meteorol. Appl., 22, 873–878.
(20).Hocking, W. K., 1983(a): On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra—I. Theory, J. Atmos. Terr. Phys., Vol. 45, p89-102.
(21).Hocking, W. K., 1983(b): Mesospheric turbulence intensities measured with a VHF radar at 35°S—II, J. Atmos. Terr. Phys., Vol. 45, p103-114.
(22).Hocking, W. K., 1985: Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: A review, Radio Sci., Vol. 20, p1405-1422.
(23).Hocking, W. K., 1997: “System design, signal-processing procedures, and preliminary results for the Canadian (London, Ontario) VHF atmospheric radar”, Radio Sci., 32, 687–706.
(24).Kishore, P., K. K. Reddy, D. N. Rao, P. B. Rao, A. R. Jain, G. V. Rama, and S. Sankar, 2000: “A statistical comparison of Indian MST radar and rawinsonde wind measurements”, Indian Journal of Radio and Space Physics, 29, 102–114.
(25).Kottayil, A., K. Mohanakumar, Titu Samson, Rejoy Rebello, M. G. Manoj, Rakesh Varadarajan, K. R. Santosh, P. Mohanan, and K. Vasudevan, 2016: “Validation of 205 MHz wind profiler radar located at Cochin India using radiosonde wind measurements”, Radio Sci., Vol. 51, No. 3, 106-117.
(26).Larsen, M. F., and J. Rottger, 1987: “Observation of thunderstorm reflectivities and doppler velocities measured at VHF and UHF”, J. Atmos. Oceanic Technol., 4, 151-159.
(27).May, P. T., 1993: “Comparison of wind-profiler and radiosonde measurements in the tropics”, J. Atmos. Oceanic Technol., 10, 122–127.
(28).Ottersten, H.,1969: “Radar backscattering from the turbulent clear atmosphere”, Radio Sci., 4, 1251-1255.
(29).Sato, T. and R. F. Woodman, 1982: Fine altitude resolution observations of stratospheric turbulent layers by the Arecibo 430 MHz radar, J. Atmos. Sci., Vol. 39, p2546-2552.
(30).Tatarskii, V. I., 1961: “Wave Propagation in a Turbulent Medium”, McGraw-Hill, New York, 285pp.
(31).Teshiba, M. S., P. B. Chilson, A. V. Ryzhkov, T. J. Schuur, and R. D. Palmer, 2009: “A combined wind profiler and polarimetric weather radar method for the investigation of precipitation and vertical velocities”, J. Atmos. Oceanic Technol., 26, 1940-1955.
(32).Thomas, L., I. Astin, and R. M. Worthington, 1997: “A statistical study of underestimates of wind speeds by VHF radar”, Annales Geophysicae, 15, 805–812.
(33).Tsuda, T., T. Sato, K. Hirose, S. Fukao and S. Kato, 1986: MU radar observations of the aspect sensitivity of backscattered VHF echo power in the troposphere and lower stratosphere, Radio Sci., Vol. 21, p971-980.
(34).Wait, J. R., 1962: “Electromagnetic waves in stratified media”, Pergamon Press, New York, pp 305.
(35).Weber, B. L., and D. B. Wuertz, 1990: “Comparison of rawinsonde and wind profiler radar measurements”, J. Atmos. Oceanic Technol., 7, 157–174.
(36).Weber, B. L., and Coauthors, 1990: “Preliminary evaluation of the first NOAA demonstration network wind profiler”, J. Atmos. Oceanic Technol., 7, 909–918.
(37).Woodman, R.F. and W.E. Guillen, 1974: “Radar Observations of Winds and Turbulence in the Stratosphere and Mesosphere”, J. Atmos. Sci., Vol.31, p.495-505
(38).Woodman, R. F. and Y. H. Chu, 1989: Aspect sensitivity measurements of VHF backscatter made with the Chung-Li radar: Plausible mechanisms, Radio Sci., Vol. 24, p113-125.
(39).Yeh, K. C., and C. H. Liu, 1974: “Theory of ionosphere waves, Academic Press, New York”, pp 464.
(40).Yufang TIAN and Daren LÜ, 2017: “Comparison of Beijing MST radar and radiosonde horizontal wind measurements“, J. Atmos. Sci., 34, 39-53.
(41).朱延祥,MST 雷達回波機制的研究,博士論文,國立中央大學,1998。
(42).朱延祥,中壢VHF雷達雷達遙測大氣原理與應用。
(43).李威志,以中壢VHF 雷達對颱風降水之觀測研究,碩士論文,國立中央大學,1998。
(44).吳鎮仲,利用中壢特高頻雷達對颱風降水粒子終端速度與粒徑大小的關係,碩士論文,國立中央大學,1999。
(45).林仲賢,利用中壢VHF 特高頻雷達對降水大氣進行高時間解析度的觀測研究,碩士論文,國立中央大學,1992。
(46).宋俊賢,利用中壢特高頻雷達對鋒面降水進行觀測與研究,碩士論文,國立中央大學,1994。
(47).梁威中,以中壢VHF 雷達對鋒面降水進行觀測與研究,碩士論文,國立中央大學,1995。
(48).李贛麟,以中壢VHF 雷達對颱風降水進行觀測與研究,碩士論文,國立中央大學,1995。
(49).林澤宏,利用中壢VHF 雷達對背景大氣與降水顆粒交互作用之研究,碩士論文,國立中央大學,1996。
(50).蘇清論,以中壢VHF 雷達對鋒面降水環境下大氣回波與降水粒子分布之特性研究,碩士論文,國立中央大學,1996。
(51).陳孟遠,利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係,碩士論文,國立中央大學,2000。
(52).陳春溢,利用中壢VHF雷達對大氣及降水回波特性之研究,碩士論文,國立中央大學,2001。
(53).徐俊偉,特高頻雷達對空中降水粒子大小與回波功率關係之研究,碩士論文,國立中央大學,2003。
(54).陳朝信,利用中壢特高頻雷達研究雨滴粒徑分佈,碩士論文,國立中央大學,2009。
(55).陳睿祥,利用中壢特高頻雷達觀測潭美颱風的降雨現象,碩士論文,國立中央大學,2014。
(56).林廷翰,中壢特高頻雷達系統初始相位偏差估計與應用,博士論文,國立中央大學,2019。