| 研究生: |
龔阡瑜 ChienYu Kung |
|---|---|
| 論文名稱: |
異質接合聚醯胺與碳纖維纏繞之鋁嵌件的包覆射出成型品之機械性能分析 Mechanical Properties Analysis for Heterogeneous Bonding of Polycaprolactam and Aluminum Inserts Wrapped with Continuous Carbon Fibers through Over-Molding Injection |
| 指導教授: | 鍾禎元 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 異質材料結合 、碳纖維預浸布 、包覆成型 、抗拉強度 |
| 外文關鍵詞: | Combination of heterogeneous materials, Carbon fiber prepreg, Over-molding, Tensile strength |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在航空與汽車產業中,異質接合技術可用於提升結構件的輕量化與強度。本研究探討聚醯胺6 (polycaprolactam, PA6)與鋁嵌件的異質接合,並使用熱固性碳纖維預浸布纏繞鋁嵌件製作拉伸試片,接著對此試片的機械性能進行量測。此外,為預測射出成型製程,本研究在實驗前使用模流軟體先進行模擬分析,預測充填過程中嵌件區域的溫度變化與型芯偏移行為,以驗證實驗結果與模擬結果的趨勢一致。
模擬結果顯示,靠近鋁嵌件處的塑料溫度下降快速主要是因為熱傳導係數不同,可能會導致成型品內部冷卻不均勻的問題,進而對成型品的機械強度和尺寸穩定性產生負面影響。型芯偏移結果顯示,纖維在橫向偏移量較大,但仍能夠完全被塑料包覆,不影響試片成型品質。
接著以手工方式製備預製件,分別採用纖維方向平行與垂直於拉伸方向之兩種纏繞方式,同時比較碳纖維預浸布是否預先固化,對界面行為的影響。在拉伸試驗結果顯示,纖維方向平行於拉伸方向時能夠提升抗拉強度,尤其未固化之組別的抗拉強度達101.88 MPa,與純PA6試片相比提升55%,顯示此方法有效增強機械性能。抗拉強度能夠提升是由於纖維排列方向與拉伸方向一致,以及未固化的碳纖維預浸布之樹脂能與PA6形成化學鍵結,形成良好的界面鍵結,使PA6塑料能夠將應力傳遞至纖維上,從而提升抗拉強度。本研究顯示,碳纖維預浸布能顯著提升異質接合試片的機械性能,提供了一種可應用於高強度輕量化結構件,可提供航太、汽車以及曲柄連桿產業的應用。
Heterogeneous bonding improves lightweight design and structural strength in the aerospace and automotive industries. This study investigates the tensile strength of specimens fabricated by integrating Polycaprolactam 6 (PA6), aluminum inserts, and thermosetting carbon fiber prepreg. Injection molding simulation software was employed to analyze temperature variations around the insert and core displacement during the filling process. The results revealed that the temperature of PA6 near the aluminum insert decreased rapidly due to disparities in thermal conductivity. This phenomenon may lead to uneven cooling, potentially compromising mechanical strength and dimensional stability. Core shift analysis indicated lateral displacement of the carbon fiber. However, the fibers were still fully covered, which ensured proper specimen formation.
Two fiber orientations were selected for hand-wrapping the carbon fiber prepreg: one aligned with the tensile direction, and the other perpendicular. Moreover, the effect of carbon fiber prepreg pre-curing on interfacial bonding behavior was evaluated. Tensile testing demonstrated that specimens reinforced with uncured carbon fiber prepreg aligned with the loading direction exhibited an average tensile strength of 101.88 MPa, representing a 55% increase compared to pure PA6 specimens. The tensile strength was enhanced by the alignment of the fibers with the loading direction, as well as the chemical bonding between the uncured resin of carbon fiber prepreg and PA6. This interfacial bonding enables PA6 to transfer stress to the fibers effectively. These findings confirmed that carbon fiber prepreg significantly enhances mechanical performance and is suitable for lightweight, high-strength applications in the aerospace, automotive, and bicycle industries.
[1] A. R. Agrawal, I. O. Pandelidis, and M. Pecht, "Injection‐molding process control—A review," Polymer engineering and science., vol. 27, no. 18, pp. 1345-1357, 1987.
[2] D. V. Rosato and M. G. Rosato, Injection molding handbook., Springer Science & Business Media, 2012.
[3] R. Y. Chang, Y. H. Peng, D. Hsu, and W. H. Yang, "Three-Dimensional Insert Molding Simulation in Injection Molding," in ANTEC-CONFERENCE PROCEEDINGS-. 2004, vol. 1, pp. 496-500.
[4] H. S. Kim, J. R. Cho, and S. R. Han, "Development of automobile wheel speed sensor using the injection molding by lifting the insert parts," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 11, pp. 1-14, 2019.
[5] 科盛科技股份有限公司,Moldex3D/Solid真實三維模流分析理論與應用,科盛科技股份有限公司,2009。
[6] E. Lafranche, P. Krawczak, J. Ciolczyk, and J. Maugey, "Injection moulding of long glass fibre reinforced polyamide 6-6: guidelines to improve flexural properties," Express Polymer Letters, vol. 1, no. 7, pp. 456-466, 2007.
[7] N. Svensson, R. Shishoo, and M. Gilchrist, "Manufacturing of thermoplastic composites from commingled yarns-A review," Journal of Thermoplastic Composite Materials, vol. 11, no. 1, pp. 22-56, 1998.
[8] 王荣国、张显友、武卫莉和谷万里,复合材料概论,哈尔滨工业大学出版社,2001。
[9] 黃靖師,「使用埋入射出成形製程對於手機顯示器模組強度改善之研究」,國立交通大學,碩士論文,2010。
[10] B. Beck, H. Tawfik, J. Haas, Y. B. Park, and F. Henning, "Automated 3D Skeleton Winding Process for Continuous-Fiber-Reinforcements in Structural Thermoplastic Components," in Advances in Polymer Processing 2020, Berlin, Heidelberg, C. Hopmann and R. Dahlmann, Eds., 2020: Springer Berlin Heidelberg, pp. 150-161.
[11] M. Azeem et al., "Application of Filament Winding Technology in Composite Pressure Vessels and Challenges: A Review," Journal of Energy Storage, vol. 49, p. 103468, 2022/05/01/ 2022.
[12] T. Sofi, N. Stefan, and R. and Schledjewski, "Path calculation, technology and opportunities in dry fiber winding: a review," Advanced Manufacturing: Polymer & Composites Science, vol. 4, no. 3, pp. 57-72, 2018.
[13] D. May, Integrated Product Development with Fiber-Reinforced Polymers, 01/01 2021.
[14] S. Ekşi and K. Genel, "Comparison of mechanical properties of unidirectional and woven carbon, glass and aramid fiber reinforced epoxy composites," Acta Physica Polonica A, vol. 132, no. 3, pp. 879-882, 2017.
[15] Kumair. "Uni-directional and Woven Carbon Fiber." https://kumair.com/uni-directional-and-woven-carbon-fiber/
[16] M. Endo et al., "Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications," Carbon, vol. 39, no. 9, pp. 1287-1297, 2001.
[17] G. G. Tibbetts, "Vapor-grown carbon fibers: Status and prospects," Carbon, vol. 27, no. 5, pp. 745-747, 1989.
[18] B. A. Newcomb, "Processing, structure, and properties of carbon fibers," Composites Part A: Applied Science and Manufacturing, vol. 91, pp. 262-282, 2016.
[19] ACP Composites. "What is a Prepreg?" ACP Composites. https://acpcomposites.com/what-is-a-prepreg
[20] S. Rusnáková, M. Kalová, and Z. Jonšta, "Overview of production of pre-preg, prototype and testing," IOP Conference Series: Materials Science and Engineering, vol. 448, no. 1, p. 012069, 2018/11/01 2018.
[21] A. J. H. Garete, M. F. Fadullo, and R. J. S. Roscain, "Epoxy Mold Compound Curing Behavior and Mold Process Cure Time Interaction on Molded Package Performance," in 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC), 4-6 Dec. 2019 2019, pp. 311-315.
[22] X. Liu, X. Gan, and A. Ping, "Automatic flaw detection of carbon fiber prepreg using a CFP-SSD model during preparation," Measurement Science and Technology, vol. 35, no. 3, p. 035604, 2024. [
[23] Z. Gürdal, R. T. Haftka, and P. Hajela, Design and optimization of laminated composite materials. John Wiley & Sons, 1999.
[24] SMARTMolding: 模具與成型智慧工廠. "第62 招、充填對纖維配向的影響【纖維配向篇】." https://www.smartmolding.com/22-04c01/
[25] U. Yilmazer and M. Cansever, "Effects of processing conditions on the fiber length distribution and mechanical properties of glass fiber reinforced nylon‐6," Polymer composites, vol. 23, no. 1, pp. 61-71, 2002.
[26] Z. Sun, Y. Duan, H. An, X. Wang, S. Liang, and N. Li, "Research progress and application of natural fiber composites," Journal of Natural Fibers, vol. 20, no. 2, p. 2206591, 2023.
[27] L. HYLOLOGY PLASTIC CO. "長纖維增強複合材料." https://www.hylologyplastic.com/long-fiber-reinforced-tw
[28] 聚鴻塑膠股份有限公司. "塑膠材質:烘料溫度 & 時間." https://www.ji-horng.com.tw/plastic-material-drying-temperature-lead-time
[29] 台灣區電腦輔助成型技術交流協會. "射出成型穩定的關鍵:淺談塑料流動阻力." https://www.caemolding.org/cmm/lcpf-202007/#
[30] SMARTMolding: 模具與成型智慧工廠. "射出成型參數與品質穩定度的相關性探討." https://www.smartmolding.com/21-04b02/
[31] 王茂齡、張榮語和許嘉翔,模流分析理論與實務,科盛科技股份有限公司,2018。
[32] SMARTMolding: 模具與成型智慧工廠. "射出製程的冷卻時間加工條件." https://www.smartmolding.com/18-04c04/
[33] H. Kazan, S. Farahani, and S. Pilla, "Feasibility Study for Manufacturing CF/Epoxy – Thermoplastic Hybrid Structures in a Single Operation," Procedia Manufacturing, vol. 33, pp. 232-239, 2019.
[34] N. Karakaya, M. Papila, and G. Özkoç, "Overmolded hybrid composites of polyamide-6 on continuous carbon and glass fiber/epoxy composites: ‘An assessment of the interface’," Composites Part A: Applied Science and Manufacturing, vol. 131, p. 105771, 2020.
[35] 公隆化學股份有限公司. "矽烷偶聯劑的多功能性 : 從表面改性到高性能材料." https://www.es-kelly.com/news_detail.php?newsId=JCUyNDIjIQ
[36] 協銓企業有限公司. "密著促進劑,偶聯劑." https://www.sheichain.com/h/ServiceDetail?key=833757102613&cont=348425
[37] S. Pansart, "Prepreg processing of advanced fibre-reinforced polymer (FRP) composites," in Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications, J. Bai Ed.: Woodhead Publishing, 2013, pp. 125-154.
[38] D. G. Heflin and J.-A. E. Mansson, "Mechanisms for combining polyamide and epoxy and their effects on mechanical performance—A review," Polymers and Polymer Composites, vol. 30, 2022.
[39] SMARTMolding: 模具與成型智慧工廠. "Stress-strain curve of resin material 塑膠材料的應力- 應變曲線." https://www.smartmolding.com/18-07c03/
[40] C. A. HARPER, Handbook of Plastic Processes, 2006.
[41] M. Y. Kondo et al., "Recent advances in the use of Polyamide-based materials for the automotive industry," Polímeros, vol. 32, p. e2022023, 2022.
[42] Q. Deshoulles, M. Le Gall, C. Dreanno, M. Arhant, D. Priour, and P. Y. Le Gac, "Modelling pure polyamide 6 hydrolysis: Influence of water content in the amorphous phase," Polymer Degradation and Stability, vol. 183, p. 109435, 2021.
[43] M. Kutz, Applied plastics engineering handbook: processing and materials. William Andrew, 2011.
[44] Wikipedia contributors. "Thermosetting polymer." https://en.wikipedia.org/wiki/Thermosetting_polymer
[45] 周曦亚主編,复合材料,化学工业出版社,北京,2004。
[46] 大格化學工業股份有限公司. "EPORITE EHM-30801." https://www.epolab.com/proimage/control_page/tds-ehm-30801(c).pdf
[47] 台中精機. "台中精機VsP系列塑膠射出成型機規格表." https://injection-molding.victortaichung.com/zh_TW/shop/category/hybrid-injection-molding-machine-vsp-series-38
[48] 潤輝科技有限公司. "油式溫度控制機AO系列規格表." https://www.a1-max.com.tw/product/detail1.html.
[49] 晏邦電機工業有限公司. "料斗乾燥機(HD/IHD/DHD)規格表." https://www.yannbang.com/hopper-dryer-tw
[50] INSTRON. "Floor standing Fatigue Testing Systems Specification Table." https://www.instron.cn/zh-cn/products/testing-systems/dynamic-and-fatigue-systems/servohydraulic-fatigue/8801---8802.
[51] A. Kausar, "Advances in carbon fiber reinforced polyamide-based composite materials," Advances in materials science, vol. 19, no. 4, pp. 67-82, 2019.
[52] R. J. Glebes, "Performance Informed Technical Cost Modeling for Novel Manufacturing.," Purdue University Graduate School, 2019.
[53] 林伯紘,「異質接合尼龍6與連續碳纖維纏繞之鋁合金嵌件包覆射出成型研究」,國立中央大學,碩士論文,2024。
[54] CAE模具成型技術雜誌. "第 42 招、充填狀態與模腔壓力及溫度曲線的特徵【壓力與溫度篇】." https://www.caemolding.org/cmm/moldex3d-42/
[55] 鍾禎元、辛維朗和傅家芸,「利用人工智慧蟻群演算法最佳化射出成型品之縫合線強度」,第29屆模具暨應用產業技術論文發表會論文集,台灣,2025年8月。