跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳俞碩
Yu-Shuo Chen
論文名稱: 具有非線性化學梯度和微小擴散的廣義生物趨向性模型的脈衝解的存在性與其不穩定性
Existence and Instability of Traveling Pulses of Generalized Keller-Segel Equations with Nonlinear Chemical Gradients and Small Diffusions
指導教授: 洪盟凱
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 82
中文關鍵詞: 趨向性奇異擾動法特徵值行波解譜分析本質譜
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文,我們考慮帶有非線性交互作用以及微小的擴散運動 此篇論文,我們考慮帶有非線性交互作用以及微小的擴散運動 此篇論文,我們考慮帶有非線性交互作用以及微小的擴散運動 此篇論文,我們考慮帶有非線性交互作用以及微小的擴散運動 此篇論文,我們考慮帶有非線性交互作用以及微小的擴散運動 此篇論文,我們考慮帶有非線性交互作用以及微小的擴散運動 此篇論文,我們考慮帶有非線性交互作用以及微小的擴散運動 此篇論文,我們考慮帶有非線性交互作用以及微小的擴散運動 此篇論文,我們考慮帶有非線性交互作用以及微小的擴散運動 此篇論文,我們考慮帶有非線性交互作用以及微小的擴散運動 的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統的 廣義微生物趨向性模型。我們利用奇異擾動法來證明此系統行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 行波解的存在性,我們也用到了動態系統中龐加萊理論。不考 慮微生物有擴散運動的時候 慮微生物有擴散運動的時候 慮微生物有擴散運動的時候 慮微生物有擴散運動的時候 ,我們透過分析其對應的代數微系統 ,我們透過分析其對應的代數微系統 ,我們透過分析其對應的代數微系統 ,我們透過分析其對應的代數微系統 ,我們透過分析其對應的代數微系統 ,我們透過分析其對應的代數微系統 ,我們透過分析其對應的代數微系統 給出 了脈衝解的存在性必要條件。 脈衝解的存在性必要條件。 脈衝解的存在性必要條件。 脈衝解的存在性必要條件。 脈衝解的存在性必要條件。 脈衝解的存在性必要條件。 在奇異擾動法的理論保證之 奇異擾動法的理論保證之 奇異擾動法的理論保證之 奇異擾動法的理論保證之 下, 此必要條件一樣適用於當微生物有小的擴散運動形況。同 此必要條件一樣適用於當微生物有小的擴散運動形況。同 此必要條件一樣適用於當微生物有小的擴散運動形況。同 此必要條件一樣適用於當微生物有小的擴散運動形況。同 此必要條件一樣適用於當微生物有小的擴散運動形況。同 此必要條件一樣適用於當微生物有小的擴散運動形況。同 此必要條件一樣適用於當微生物有小的擴散運動形況。同 此必要條件一樣適用於當微生物有小的擴散運動形況。同 此必要條件一樣適用於當微生物有小的擴散運動形況。同 此必要條件一樣適用於當微生物有小的擴散運動形況。同 此必要條件一樣適用於當微生物有小的擴散運動形況。同 時我們藉由譜分析 時我們藉由譜分析 時我們藉由譜分析 來討論利用上述奇異擾動法找出的脈衝解線 來討論利用上述奇異擾動法找出的脈衝解線 來討論利用上述奇異擾動法找出的脈衝解線 來討論利用上述奇異擾動法找出的脈衝解線 來討論利用上述奇異擾動法找出的脈衝解線 來討論利用上述奇異擾動法找出的脈衝解線 來討論利用上述奇異擾動法找出的脈衝解線 來討論利用上述奇異擾動法找出的脈衝解線 性穩定。 性穩定。


    In this paper, we consider a generalized model of 2  2 Keller-Segel system with
    nonlinear chemical gradient and small cell di usion. The existence of the traveling pulses
    for such equations is established by the methods of geometric singular perturbation (GSP
    in short) and trapping regions from dynamical systems theory. By the technique of GSP,
    we show that the necessary condition for the existence of traveling pulses is that their
    limiting pro les with vanishing di usion can only consist of the slow
    ows on the critical
    manifold of the corresponding algebraic-di erential system. We also consider the linear
    stability of these pulses by the spectral analysis of the linearized operators.

    1 Introduction 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Chemotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Keller-Segel System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Survey on Keller-Segel System . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.1 Signal-dependent sensitivity . . . . . . . . . . . . . . . . . . . . . 6 1.4.2 Density-dependent sensitivity . . . . . . . . . . . . . . . . . . . . 7 1.4.3 Nonlinear di usion . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.4 Saturating signal production . . . . . . . . . . . . . . . . . . . . . 8 1.4.5 Nonlinear gradient models . . . . . . . . . . . . . . . . . . . . . . 9 1.4.6 The cell kinetics model . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Traveling Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Geometric Singular Perturbation . . . . . . . . . . . . . . . . . . . . . . 12 1.6.1 Invariant manifold theorems . . . . . . . . . . . . . . . . . . . . . 13 1.6.2 Geometric singular perturbation theory beyond normal hyperbolicity 17 2 Traveling Waves Solutions to Generalized Keller-Segel equations 20 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Traveling Wave solutions to Keller-Segel equations . . . . . . . . . . . . . 21 2.2.1 A dynamical system formulation . . . . . . . . . . . . . . . . . . . 21 2.2.2 Critical manifold, and limiting fast dynamics . . . . . . . . . . . . 23 2.2.3 The limiting slow dynamics . . . . . . . . . . . . . . . . . . . . . 24 2.2.4 The trapping region . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 s   p0q and 1 ¡ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.1 The limiting slow dynamics . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 The trapping region . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.1 Weighted function spaces . . . . . . . . . . . . . . . . . . . . . . . 43 2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Generalized Riemann problem of degenerate Keller-Segel systems (work- ing in progress). 46 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 A Appendix 60 A.1 Resolvent estimates for the operator L . . . . . . . . . . . . . . . . . . . 60 References 64

    [1] Alexander J., Gardner R.,Jone C. K. R. T., A topological invariant arising in the stability
    analysis of travelling waves, J. Reine Angew. Math., 410 (1990), pp. 167-212.
    [2] Alt W., Biased Random Walk Models for Chemotaxis and Related Di usion Approximations,
    J. Math. Biology 9, 147-177 (1980)
    [3] Biler P., Global Solutions to Some Parabolic-Elliptic Ssystems of Chemotaxi, Adv. Math.
    Sci. Appl. 9 (1999), 347-359.
    [4] Boon, J.P., Herpigny, B., Model for chemotactic bacterial bands, Bull. Math. Biol. 48(1),
    1-19 (1986)
    [5] Bose K., Cox T., Silvestri S., Varin P., Invasion Fronts and Pattern Formation in a Model
    of Chemotaxis in One and Two Dimensions, SIAM Undergrad. Res. Online. 6, 228-245
    (2013)
    [6] Byrne, H.M., Owen, M.R.: A new interpretation of the KellerVSegel model based on
    multiphase modelling. J. Math. Biol. 49, 604-626 (2004)
    [7] Chang C.C., Chen Y.S., Hong J. M., Huang B.C., Existence and Instability of Traveling
    Pulses of Generalized Keller-Segel Equations with Nonlinear Chemical Gradients and
    Small Di usions,preprint
    [8] Chen G.-Q., Slemrod M., Wang D. , Vanishing viscosity method for transonic
    ow, Arch.
    Rational Mech. Anal., 189 (2008), pp. 159-188.
    [9] Chou S.-W., Hong J.M., Su Y.-C., An extension of Glimm's method to the gas dynamical
    model of transonic
    ows, Nonlinearity, 26 (2013), pp. 1581-1597.
    [10] Chou S.-W., Hong J.M., Su Y.-C., Global entropy solutions of the general nonlinear
    hyperbolic balance laws with time-evolution
    ux and source, Methods Appl. Anal., 19
    (2012), pp. 43-76.
    [11] Chou S.-W., Hong J.M., Su Y.-C., The initial-boundary value problem of hyperbolic
    integro-di erential systems of nonlinear balance laws, Nonlinear Anal., 75 (2012), pp.
    5933{5960.
    [12] Corrias, L., Perthame, B., Zaag, H.: Global solutions of some chemotaxis and angiogenesis
    systems in high space dimensions. Milan J. Math. 72, 1-28 (2004)
    67
    [13] Dafermos C.M., Hsiao L., Hyperbolic systems of balance laws with inhomogeneity and
    dissipation, Indiana Univ. Math. J., 31 (1982), pp. 471-491.
    [14] Dkhil, F., Singular limit of a degenerate chemotaxis- sher equation., Hiroshima-
    Math. J. 34, 101-115(2004)
    [15] Eberl, H.J., Parker, D.F., Loosdrecht, M.C.M.van. : A new deterministic spatio-temporal
    continuum model for bio lm development. J. Theor. Med. 3(3), 161-175 (2001)
    [16] Fenichel N., Persistence and smoothness of invariant manifolds and
    ows, Indiana Univ.
    Math. J. 21 (1971/1972), pp. 193-226.
    [17] Fenichel N., Geometric singular perturbation theory for ordinary di erential equations,
    J. Di . Eqns. 31 (1979), no. 1, pp. 53-98.
    [18] Fan J., Zhao K., Blow up criterion for a hyperbolicVparabolic system arising from chemotaxis,
    J. Math. Anal. Appl. 394 (2012) 687-695
    [19] Fatkullin I., A study of blow-ups in the Keller-Segel model of chemotaxis, Nonlinearity
    26 (2013) 81-94
    [20] Ford, R.M., Lau enburger, D.A., Measurement of bacterial random motility and chemotaxis
    coecients: II. application of single cell based mathematical model. Biotechnol.
    Bioeng. 37, 661-672 (1991)
    [21] Gajewski H., Zacharia K., Global Behaviour of a Reaction - Di usion System Modelling
    Chemotaxis, Math. Nachr. 195 (1998), 77-114
    [22] Glimm J. , Solutions in the large for nonlinear hyperbolic systems of equations, Commun.
    Pure Appl. Math., 18 (1965), pp. 697-715.
    [23] Goatin P., LeFloch P.G. , The Riemann problem for a class of resonant nonlinear systems
    of balance laws, Ann. Inst. H. Poincare Anal. Non Lineaire, 21 (2004), pp. 881-902.
    [24] Goodman J.B. , Initial boundary value problems for hyperbolic systems of conservation
    laws, Thesis (Ph. D.){Stanford University., (1983).
    [25] J. Groah, J. Smoller, B. Temple, Shock Wave Interactions in General Relativity, Monographs
    in Mathematics, Springer, Berlin, New York, 2007.
    [26] Guo H., Zheng S., Liang B., Asymptotic behaviour of solutions to the KellerVSegel model
    for chemotaxis with prevention of overcrowding, Nonlinearity 26 (2013) 405-416
    [27] Henry D., Geometric theory of semilinear parabolic equations, in \Lecture Notes in
    Mathematics," Vol. 840, Springer-Verlag, New York rBerlin, 1981.
    [28] Henry, M., Hilhorst, D., Schatzle, R., Convergence to a viscocity solution for an
    advectionreaction-di usion equation arising from a chemotaxis-growth model., Hiroshima
    Math. J. 29, 591-630(1999)
    68
    [29] Herrero M. A., Velazquez J. J. L., Chemotactic collapse for the Keller-Segel model, J.
    Math. Biol. (1996) 35: 177-194
    [30] Herrero M. A., Velazquez J. J. L., Singularity patterns in a chemotaxis model, Math.
    Ann. 306,583-623 (1996)
    [31] Hillen T., Potapov Alex, The one-dimensional chemotaxis model: global existence and
    asymptotic pro le, Math. Meth. Appl. Sci. 2004; 27:1783-1801
    [32] Hillen T., Painter K. J., A users guide to PDE models for chemotaxis, J. Math. Biol.
    [33] Hillen T., Painter K. J., Global Existence for a Parabolic Chemotaxis Model with Prevention
    of Overcrowding, Adv. in Appl. Math., 26, 280-301 (2001)
    [34] Hillen T., Steven A., Hyperbolic models for chemotaxis in 1-D, Nonlinear Analysis: Real
    World Applications 1 (2000) 409-433
    [35] Hillen T., Painter K., Schmeiser C., Global Existence for Chemotaxi with Finte Sampling
    Radius, Discrete and Continuous Dynamical Systems-Series B Vol.7, No.1, Jan. 2007
    [36] Hofer, T., Sherratt, J.A., Maini, P.K., Dictyostelium discoideum: cellular selforganisation
    in an excitable biological medium, Proc. R. Soc. Lond. B. 259, 249-257
    (1995)
    [37] Hong J.M., An extension of Glimm's method to inhomogeneous strictly hyperbolic systems
    of conservation laws by \weaker than weak" solutions of the Riemann problem, J.
    Di . Equ., 222 (2006), pp. 515-549.
    [38] Hong J.M., LeFloch P.G., A version of Glimm method based on generalized Riemann
    problems, J. Portugal Math., 64 (2007), pp. 199-236.
    [39] Hong J.M., Temple B., The generic solution of the Riemann problem in a neighborhood
    of a point of resonance for systems of nonlinear balance laws, Methods Appl. Anal., 10
    (2003), pp. 279-294.
    [40] Hong J.M., Temple B., A bound on the total variation of the conserved quantities for
    solutions of a general resonant nonlinear balance law, SIAM J. Appl. Math., 64 (2004),
    pp. 819-857.
    [41] Hong J.M., Su Y.-C., Generalized Glimm scheme to the initial-boundary value problem
    of hyperbolic systems of balance laws, Nonlinear Anal., 72 (2010), pp. 635-650.
    [42] Horstmann, D., Lyapunov functions and L p-estimates for a class of reaction-di usion
    systems. Coll. Math. 87, 113-127 (2001)
    [43] Horstmann D., The nonsymmetric case of the Keller-Segel model in chemotaxis: some
    recent results, Nonlinear di er. equ. appl. 8 (2001) 399-423
    [44] Horstmann D., From 1970 until present: the Keller-Segel model in chemotaxis and its
    consequences, I. Jahresberichte DMV 105(3), 103-165 (2003)
    69
    [45] Horstmann D., Stevens A., A Constructive Approach to Traveling Waves in Chemotaxis,
    J. Nonlinear Sci., Vol. 14 (2004), pp. 1-25
    [46] Horstmann D.,Wang G., Blow-up in a chemotaxis model without symmetry assumptions,
    Euro. Jnl of Applied Mathematics (2001), vol. 12, pp. 159-177.
    [47] Horstmann D., Winkler M., Boundedness vs. blow-up in a chemotaxis system, J. Di erential
    Equations 215 (2005) 52-107
    [48] https://en.wikipedia.org/wiki/Chemotaxis
    [49] Huang B.-C., Chou S.-W., Hong J.M., Yen C.-C. , Global transonic solutions of planetary
    atmospheres in hydrodynamic region-hydrodynamic escape problem due to gravity and
    heat, arXiv:1511.00804 [math.AP], to appear in SIAM J. Math. Anal.
    [50] Isaacson E., Temple B., Nonlinear resonance in systems of conservation laws, SIAM J.
    Appl. Anal., 52 (1992), pp. 1260-1278.
    [51] Isaacson E., Temple B., Convergence of the 22 Godunov method for a general resonant
    nonlinear balance law, SIAM J. Appl. Anal., 55 (1995), pp. 625-640.
    [52] Jin H.Y., Li J., Wang Z.A. , Asymptotic stability of traveling waves of a chemotaxis
    model with singular sensitivity, J. Di erential Equations 255 (2013) 193-219
    [53] Jones C.K.R.T., Geometric singular perturbation theory, Dynamical Systems (Montecatini
    Terme, 1994). Lecture Notes in Math. 1609, Springer-Verlag, Berlin, 1995, pp.
    44-118.
    [54] Keller, E.F., Segel, L.A., Model for chemotaxis, J. Theor. Biol. 30, 225-234 (1971)
    [55] Keller, E.F., Segel, L.A., Traveling bands of chemotactic bacteria: a theoretical analysis,
    J. Theor. Biol. 30, 377-380 (1971)
    [56] Kim, I.C., Limits of chemotaxis growth model., Nonlinear Anal. 46, 817-834 (2001)
    [57] Kowalczyk, R., Preventing blow-up in a chemotaxis model, J. Math.Anal. Appl. 305,
    566-588 (2005)
    [58] Lapidus, I.R., Schiller, R., Model for the chemotactic response of a bacterial population.
    Biophys, J 16(7), 779-789 (1976)
    [59] Lax P.D., Hyperbolic system of conservation laws II, Commun. Pure Appl. Math., 10
    (1957), pp. 537-566.
    [60] Levine, H.A., Sleeman, B.D., A system of reaction di usion equations arising in the
    theory of reinforced random walks, SIAM J. Appl. Math. 57, 683-730 (1997)
    [61] LeFloch P.G., Entropy weak solutions to nonlinear hyperbolic systems under nonconservative
    form, Commun. Part. Di . Equ., 13 (1988), pp. 669-727.
    70
    [62] LeFloch P.G. , Shock waves for nonlinear hyperbolic systems in nonconservative form,
    Institute for Math. and its Appl., Minneapolis, Preprint, 593, 1988.
    [63] LeFloch P.G., Liu T.-P., Existence theory for nonlinear hyperbolic systems in nonconservative
    form, Forum Math., 5 (1993), pp. 261{280.
    [64] LeFloch P.G., Raviart P.A. , Asymptotic expansion for the solution of the generalized
    Riemann problem, Part 1, Ann. Inst. H. Poincare Anal. Non Lineaire, 5 (1988), pp.
    179-209.
    [65] Li D., Li T., Zhao K., On a Hyperbolic Parabolic System Modeling Chemotaxi, Math.
    Models and Methods in Appl. Sci., Vol. 21, No. 8 (2011) 1631-1650
    [66] Li D., Li T., Zhao K., Global Dynamics of a Hyperbolic-Parabolic Model Arising from
    Chemotaxi, SIAM J. APPL. MATH., Vol. 72(2012), No. 1, pp. 417-443
    [67] Li T., Wang Z.A., Asymptotic nonlinear stability of traveling waves to conservation laws
    arising from chemotaxis, J. Di erential Equations 250 (2011) 1310-1333
    [68] Li J., Xin Z., Yin H., Transonic shocks for the full compressible Euler system in a general
    two-dimensional De Laval nozzle, Arch. Ration. Mech. Anal., 207 (2013), pp. 533-581.
    [69] Liu T.-P., Quasilinear hyperbolic systems, Commun. Math. Phys., 68 (1979), pp. 141{
    172.
    [70] Liu T.-P., Nonlinear stability and instability of transonic
    ows through a nozzle, Commun.
    Math. Phys., 83 (1982), pp. 243-260.
    [71] Liu T.-P., Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys., 28
    (1987), pp. 2593-2602.
    [72] Liu J., Wang Z.-A., Classical solutions and steady states of an attractionVrepulsion
    chemotaxis in one dimension, Journal of Biological Dynamics Vol. 6, Suppl. 1, May 2012,
    31-41
    [73] Li J., Li T., Wang Z.A., Stability of traveling waves of the Keller-Segel system with
    logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (14) (2014), pp. 2819-2849.
    [74] Luskin M., Temple B., The existence of global weak solution to the nonlinear waterhammer
    problem, Commun. Pure Appl. Math., 35 (1982), pp. 697{735.
    [75] Maso G. D., LeFloch P., Murat F., De nition and weak stability of nonconservative
    products, J. Math. Pure Appl., 74 (1995), pp. 483-548.
    [76] Morawetz C.S., On a weak solution for a transonic
    ow problem, Commun. Pure Appl.
    Math., 38 (1985), pp. 797-817.
    [77] Shapiro A.H., The dynamics and thermodynamics of compressible
    uid
    ow, vol. 1,
    Ronald Press Co., New York, 1953.
    71
    [78] Smoller J., Shock Waves and Reaction-Di usion Equations, 2nd ed., Springer-Verlag,
    Berlin, New York, 1994.
    [79] Temple B., Global solution of the Cauchy problem for a class of 22 nonstrictly hyperbolic
    conservation laws, Adv. Appl. Math., 3 (1982), pp. 335-375.
    [80] Tsuge N., Existence of global solutions for isentropic gas
    ow in a divergent nozzle with
    friction, J. Math. Anal. Appl., 426 (2015), pp. 971-977.
    [81] Maini, P.K., Myerscough, M.R., Winters, K.H., Murray, J.D., Bifurcating spatially heterogeneoussolutions
    in a chemotaxis model for biological pattern generation, Bull. Math.
    Biol. 53(5), 701-719(1991)
    [82] Myerscough M.R., Maini P.K., Painter K.J., Pattern Formation in a Generalized Chemotactic
    Model, Bulletin of Mathematical Biology (1998) 60, 1-26
    [83] Naito Y., Senba T., Self-similar blow-up for a chemotaxis system in higher dimensional
    domains, RIMS Kokyuroku Bessatsu B15 (2009), 87-99
    [84] Nagai T., Ikeda T., Traveling waves in a chemotactic model, J. Math. Biol. 30 (1991),
    pp. 169-184.
    [85] Nagai T., Senba T., Yoshida K., Application of the Trudinger-Moser Inequah.ty to a
    Parabolic System of Chemotaxis, Funkcialaj Ekvacioj, 40 (1997) 411-433
    [86] Osaki, K., Tsujikawa, T.,Yagi, A., Mimura,M., Exponential attractor for a chemotaxisgrowth
    system of equations, Nonlinear Anal. 51, 119-144 (2002)
    [87] Othmer, H.G., Stevens, A., Aggregation, blowup and collapse: The ABCs of taxis in
    reinforced random walks, SIAM J. Appl. Math. 57, 1044-1081 (1997)
    [88] Othmer, H.G., Dunbar, S.R., Alt, W., Models of dispersal in biological systems, J. Math.
    Biol. 26,263V298 (1988)
    [89] Painter, K.J., Maini, P.K., Othmer, H.G., Complex spatial patterns in a hybrid chemotaxis
    reaction-di usion model, J. Math. Biol. 41(4), 285-314 (2000)
    [90] Painter, K.J., Maini, P.K., Othmer, H.G., Development and applications of a model for
    cellular response to multiple chemotactic cues, J. Math. Biol. 41(4), 285-314 (2000)
    [91] Painter, K., Hillen, T., Volume- lling and quorum-sensing in models for chemosensitive
    movement, Can. Appl. Math. Quart. 10(4), 501-543 (2002)
    [92] Park, H.T.,Wu, J., Rao,Y., Molecular control of neuronalmigration., Bioessays 24(9),
    821-827 (2002)
    [93] Patlak, C.S., Random walk with persistence and external bias, Bull. Math. Biophys. 15,
    311-338 (1953)
    72
    [94] Patnaik P. R., Chemotactic Sensitivity of Escherichia coli to Di usion Perturbations in
    Narrow Tubes, The Open Chemical Engineering Journal, 2008, 2, 35-41
    [95] Rivero, M.A., Tranquillo, R.T., Buettner, H.M., Lau enburger, D.A., Transport models
    for chemotactic cell populations based on individual cell behavior, Chem. Eng. Sci. 44,
    1-17 (1989)
    [96] Rosen G., Baloga S. , On the stability of steady propagating bands of chemotactic bacteria,
    Math. Biosci. 24 (1975),pp. 273-279.
    [97] Sandstede B., Stability of travelling waves, in Handbook of Dynamical Systems II: Towards
    Applications, B. Fiedler, ed., North-Holland, Amsterdam, 2002, pp. 983-1055.
    [98] Segel, L.A., Incorporation of receptor kinetics into a model for bacterial chemotaxis, J.
    Theor. Biol. 57(1), 23-42 (1976)
    [99] Segel, L.A., A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM
    J. Appl. Math. 32, 653-665 (1977)
    [100] Sherratt, J.A., Chemotaxis and chemokinesis in eukaryotic cells: the Keller-Segel equations
    as an approximation to a detailed model, Bull. Math. Biol. 56(1), 129V146 (1994)
    [101] Sherratt, J.A., Sage, E.H., Murray, J.D., Chemical control of eukaryotic cell movement:
    a newmodel, J. Theor. Biol. 162(1), 23-40 (1993)
    [102] P. Szmolyan P., Wechselberger M., Canards in R3,J. Di . Eqns. 177 (2001), no. 2, pp.
    419-453.
    [103] Tyson, R., Lubkin, S.R., Murray, J.D., A minimal mechanism for bacterial pattern
    formation, Proc. R. Soc. Lond. B 266, 299-304 (1999)
    [104] Volpert A. I., Traveling Wave Solutions of Parabolic Systems. Translations of Mathematical
    Monographs 140, Amer. Math. Soc., Providence (1994)
    [105] Wang, X., Qualitative behavior of solutions of chemotactic di usion systems: E ects of
    motility and chemotaxis and dynamics., SIAM J. Math. Ana. 31, 535-560 (2000)
    [106] Wang Z., Hillen T., Shock formation in a chemotaxis model, Math. Meth. Appl. Sci.
    2008; 31:45-70
    [107] Wang Z.-A., Zhao K., Global Dynamics and Di usion Limit of a One-Dimesional Repulsive
    Chemotaxis Model, Communications on Pure and Applied Aanlysis Vol.12, No.6,
    Nov. 2013 pp. 3027-3046
    [108] Wolansky G., Espejo E., The Patlak-Keller-Segel model of chemotaxis on R2 with singular
    drift and mortality rate, Nonlinearity 26 (2013) 2315-2331

    QR CODE
    :::