跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡凱哲
Kyle Ezekiel Juadines
論文名稱: Investigation of Equatorial Plasma Bubble Observations in the Taiwan-Philippine Region Using GNSS Receiving Network and Hualien VIPIR Station (2023-2024)
指導教授: 蔡龍治
Lung-Chih Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 60
中文關鍵詞: 赤道展幅現象赤道電漿泡總電子含量變化率指標VS4VIPIR
外文關鍵詞: Equatorial Spread-F (ESF), Equatorial Plasma Bubbles (EPBs), Rate of Total Electron Content Index, VS4, VIPIR
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This study investigated the occurrence frequency, perturbation intensity, and spatial morphology of equatorial plasma bubbles (EPBs) in Taiwan from 2023 to 2024, during which solar activity increased significantly. Through the unified Rate of Total Electron Content Index (ROTI) threshold value (>0.9 TECU/min), this study found a significant increase in EPB events, from 74 in 2023 to 128 in 2024, which is closely related to the increase in solar flux and the increase in sunspot count. The intensity of flickering is measured by the VS4 index and peaks during the spring and autumn equinoxes, but significant activity is also observed during the summer solstices such as May and August, indicating that EPB formation can be extended to atypical seasons during the solar maximum. Latitude analysis shows that higher VS4 values correspond to a larger EPB extension range, up to about 28 degrees of latitude. The auxiliary data provided by the VIPIR ionospheric detector further validated the changes in the underlying ionosphere during the EPB event, with significant increases in h'F2 and foF2 values, consistent with the VS4 high-value event. The findings highlight the impact of solar driving forces on EPB behavior and highlight the importance of integrated diagnostic techniques in low-latitude GNSS vulnerability assessment.


    This study explores the occurrence, intensity, and spatial morphology of Equatorial Plasma Bubbles (EPBs) over Taiwan during 2023–2024, a period marked by elevated solar activity. Using a consistent ROTI threshold (>0.9 TECU/min), EPB detection revealed a substantial increase in events—from 74 in 2023 to 128 in 2024—closely tied to rising solar flux and sunspot numbers.
    Scintillation intensity, measured via the VS4 index, peaked during equinoctial months, but solstitial periods like May and August also showed notable activity, indicating solar maxima broaden EPB development beyond typical seasonal norms. Latitudinal analysis showed stronger VS4 values corresponded to greater EPB spread, up to ~28°.
    Supporting data from VIPIR ionosonde observations confirmed bottom-side ionospheric responses, with elevated h’F2 and foF2 values matching intense EPB episodes. These findings highlight the influence of solar forcing on EPB behavior and underscore the importance of integrated diagnostics for GNSS vulnerability assessment in equatorial regions.

    Abstract I Abstract ii Acknowledgement iii Table of Contents iv List of Figures vi List of Tables vii CHAPTER I INTRODUCTION 1 1.1.Background 1 1.2.Challenge and Research Objectives 3 CHAPTER II LITERATURE REVIEW 5 2.1. Space Weather 5 2.1.1 The Sun 5 2.1.2 Geomagnetic Storms 6 2.2. The Ionosphere 7 2.2.1 The Morphology of the Ionosphere 7 2.2.2 Plasma Ionization Process 7 2.2.3 Ionospheric Variation 8 2.2.4 Ionospheric Effects on a Propagating Electromagnetic Wave 10 2.3. Equatorial Spread F (ESF) 13 2.4. Equatorial Plasma Bubble (EPB) 15 2.4.1 Equatorial Plasma Bubble (EPB) Zonal Drift Velocity 15 2.4.2 Equatorial Plasma Bubble (EPB) Latitudinal Extent 16 2.5. Ionospheric Scintillation 16 2.5.1 Physical Mechanisms 16 2.5.2 Scintillation Morphology 16 2.5.3 Scintillation Indices 17 2.5.4 Scintillation Modelling 17 CHAPTER III STUDY AREA AND METHODS 19 3.1. Study Area 19 3.2. Dataset 20 3.2.1. Global Navigation Satellite Systems (GNSS) RINEX Data 20 3.2.2. Solar Data 21 3.2.3. Ionogram Data 21 3.3. Methods 21 3.3.1. Rate of Total Electron Content Index (RoTI) 21 3.3.2. Ionospheric Scintillation Index (Vertical) 23 3.3.3. Ionospheric Pierce Points 24 3.3.4. Red-Black Smoothing Interpolation 26 CHAPTER IV RESULTS AND DISCUSSION 30 4.1.Analysis on the Occurrence of Equatorial Plasma Bubbles using RoTI 30 4.2.Investigation on the Strength and Duration of Equatorial Plasma Bubbles 33 4.2.1. Intesity of Equatorial Plasma Bubbles 33 4.2.2. Onset and Duraion on the Occurrence of EPBs 35 4.3.Investigation into the Latitudinal Extent of Equatorial Plasma Bubbles 36 4.4.Investigating VIPIR observations with VS4 maps 41 CHAPTER V CONCLUSION 43 5.1. Analysis on the Occurrence of Equatorial Plasma Bubbles using RoTI 43 5.2. Investigation on the Strength and Duration of Equatorial Plasma Bubbles 43 5.3. Investigation into the Latitudinal Extent of Equatorial Plasma Bubbles from Ionospheric Pierce Point Maps 44 5.4.Investigating VIPIR observations with VS4 maps 45 References 46

    Aarons, J. (1971). Global_morphology_of_ionospheric_scintillations. IEEE Xplore.
    Abadi, P., Ali Ahmad, U., Otsuka, Y., Jamjareegulgarn, P., Almahi, A., Perwitasari, S., Supriadi, S., Harjupa, W., & Septiawan, R. R. (2023). Assessing the potential of ionosonde for forecasting post-sunset equatorial spread F: an observational experiment in Southeast Asia. Earth, Planets and Space, 75(1). https://doi.org/10.1186/s40623-023-01941-1
    Abdu, M. A., Bittencourt, J. A., & Batista, I. S. (1981). Magnetic declination control of the equatorial F region dynamo electric field development and spread F. Journal of Geophysical Research: Space Physics, 86(A13), 11443–11446. https://doi.org/10.1029/ja086ia13p11443
    Acharya, B., Aliotta, M., Balantekin, A. B., Bemmerer, D., Bertulani, C. A., Best, A., Brune, C. R., Buompane, R., Cavanna, F., Chen, J. W., Colgan, J., Czarnecki, A., Davids, B., deBoer, R. J., Delahaye, F., Depalo, R., García, A., Johnson, M. G., Gazit, D., … Zuber, K. (2024). Solar fusion III: New data and theory for hydrogen-burning stars. http://arxiv.org/abs/2405.06470
    Ajith, K. K., Ram, S. T., Li, G. Z., Yamamoto, M., Hozumi, K., Yatini, C. Y., & Supnithi, P. (2021). On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods. Earth and Planetary Physics, 5(5), 378–386. https://doi.org/10.26464/epp2021039
    Akasofu, S.-I. (2018). A Review of the Current Understanding in the Study of Geomagnetic Storms. International Journal of Earth Science and Geophysics Citation: Syun-Ichi A, 4, 18.
    Balan, N., Liu, L. B., & Le, H. J. (2018). A brief review of equatorial ionization anomaly and ionospheric irregularities. In Earth and Planetary Physics (Vol. 2, Issue 4, pp. 257–275). John Wiley and Sons Inc. https://doi.org/10.26464/epp2018025
    Basu, S., Groves, K. M., Basu, S., & Sultan, P. J. (2002). Speciÿcation and forecasting of scintillations in communication=navigation links: current status and future plans. In Journal of Atmospheric and Solar-Terrestrial Physics (Vol. 64). www.elsevier.com/locate/jastp
    Basu, S.; Groves, K.M.; Basu, Su. ; Sultan, P. J. (2002). Specification and Forecasting of Scintillations in Communication/Navigation links: Current Status and Future Plans. Journal of Atmospheric and Solar-Terrestrial Physics, 64, 1745–1754.
    Basu, S., Kudeki, E., Basu, Su., Valladares, C. E., Weber, E. J., Zengingonul, H. P., Bhattacharyya, S., Sheehan, R., Meriwether, J. W., Biondi, M. a., Kuenzler, H., & Espinoza, J. (1996). Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset. Journal of Geophysical Research, 101(A12), 26795. https://doi.org/10.1029/96JA00760
    Béniguel, Y. (2019). Ionospheric Scintillations: Indices and Modeling. Radio Science, 54(7), 618–632. https://doi.org/10.1029/2018RS006655
    Bhattacharyya, A. (2022). Equatorial Plasma Bubbles: A Review. In Atmosphere (Vol. 13, Issue 10). MDPI. https://doi.org/10.3390/atmos13101637
    Bhattacharyya, A., Yeh, K. C., & Franke, S. J. (n.d.). DEDUCING TURBULENCE PARAMETERS FROM TRANSIONOSPHERIC SCINTILLATION MEASUREMENTS.
    Chang, L. C., Hsieh, Y. C., Chao, C. K., Duann, Y., Salinas, C. C. J. H., Liu, J. Y., & Lin, C. C. H. (2024a). Variability and distribution of nighttime equatorial to mid latitude ionospheric irregularities and vertical plasma drift observed by FORMOSAT-5 Advanced Ionospheric Probe in-situ measurements from 2017 – 2020. Advances in Space Research, 73(7), 3536–3549. https://doi.org/10.1016/j.asr.2023.07.067
    Chang, L. C., Hsieh, Y. C., Chao, C. K., Duann, Y., Salinas, C. C. J. H., Liu, J. Y., & Lin, C. C. H. (2024b). Variability and distribution of nighttime equatorial to mid latitude ionospheric irregularities and vertical plasma drift observed by FORMOSAT-5 Advanced Ionospheric Probe in-situ measurements from 2017 – 2020. Advances in Space Research, 73(7), 3536–3549. https://doi.org/10.1016/j.asr.2023.07.067
    Cherniak, I., Zakharenkova, I., & Krankowski, A. (2014). Approaches for modeling ionosphere irregularities based on the TEC rate index. Earth, Planets, and Space, 66, 1–5.
    Chie Yeh, K., & Liu, C. (1982). Radio Wave Scintillations in the Ionosphere Invited Paper. In PROCEEDINGS OF THE IEEE (Vol. 70, Issue 4).
    Gao, H. Y., Zhang, D. H., Liu, Z. Z., Sun, S. J., Hao, Y. Q., & Xiao, Z. (2023). Revisiting the Variation of the Ionospheric Irregularities in the Low Latitude Region of China Based on Small Regional Geodetic GNSS Station Network. Space Weather, 21(8). https://doi.org/10.1029/2023SW003452
    Gauss, C. F. (1841). General Theory of Terrestrial Magnetism.
    Gopalswamy N, Akiyama S, Yashiro S, Makela P, & Xie H. (n.d.). Intense Geomagnetic Storms during Solar Cycles 23-25. https://cdaw.gsfc.nasa.gov
    Gunter Seeber. (2003). Satellite Geodesy (2nd ed.).
    Gurav, O. B., Sharma, A. K., Ghodpage, R. N., Nade, D. P., Chavan, G. A., Gaikwad, H. P., & Patil, P. T. (2018). Zonal Drift Velocity of Equatorial Plasma Bubbles During Ascending Phase of 24th Solar Cycle Using All-Sky Imager Over Kolhapur, India. Journal of Geophysical Research: Space Physics, 123(12), 10,266-10,282. https://doi.org/10.1029/2018JA025810
    Huang, C. S. (2018). Effects of the postsunset vertical plasma drift on the generation of equatorial spread F. In Progress in Earth and Planetary Science (Vol. 5, Issue 1). Springer Berlin Heidelberg. https://doi.org/10.1186/s40645-017-0155-4
    Huang, C.-M. (1967). On the Solar Cycle Variation of ionospheric F2 Layer. In CHINESE JCKJRNAL OF PHYSICS (Vol. 5, Issue 2).
    Hunsucker, R. D. (1991). Radio Techniques for Probing the Terrestrial Ionosphere.
    Ikani, O., Okeke, F. N., Okpala, K. C., Okoh, D., & Rabiu, B. (2023). Diurnal and seasonal variations of the occurrence of ionospheric irregularities over Nigeria from GNSS data. Frontiers in Astronomy and Space Sciences, 10. https://doi.org/10.3389/fspas.2023.1125950
    Jacobsen, K. S. (2014). The impact of different sampling rates and calculation time intervals on ROTI values. Journal of Space Weather and Space Climate, 4(A33), 1–9. https://doi.org/10.1051/swsc/2014031
    Karan, D. K., Daniell, R. E., England, S. L., Martinis, C. R., Eastes, R. W., Burns, A. G., & McClintock, W. E. (2020). First Zonal Drift Velocity Measurement of Equatorial Plasma Bubbles (EPBs) From a Geostationary Orbit Using GOLD Data. Journal of Geophysical Research: Space Physics, 125(9). https://doi.org/10.1029/2020JA028173
    Kelley, M. C. (2009). The Earth’s Ionosphere Plasma Physics and Electrodynamics Second Edition (2nd ed.).
    Luo, X., Xie, Z., João Francisco Galera Monico, Baocheng Zhang, Vinícius Amadeu Stuani Pereira, & Yidong Lou. (2023). An ionospheric scintillation index derived from dual-frequency Doppler measurements released by geodetic GNSS receivers operating at 1 Hz. Journal of Geodesy, 97(70).
    Moges, S. T., Sherstyukov, R. O., Kozlovsky, A., Ulich, T., & Lester, M. (2024). Statistics of Traveling Ionospheric Disturbances at High Latitudes Using a Rapid-Run Ionosonde. Journal of Geophysical Research: Space Physics, 129(4). https://doi.org/10.1029/2023JA031694
    Nayak, C., Tsai, L. C., Su, S. Y., Galkin, I. A., Caton, R. G., & Groves, K. M. (2017). Suppression of ionospheric scintillation during St. Patrick’s Day geomagnetic super storm as observed over the anomaly crest region station Pingtung, Taiwan: A case study. Advances in Space Research, 60(2), 396–405. https://doi.org/10.1016/j.asr.2016.11.036
    Numerical Recipes-The Art of Scientific Computing 3rd Edition (Press et al). (n.d.).
    Olwendo, J., Cilliers, P. J., & Ming, O. (2019). Comparison of Ground-Based Ionospheric Scintillation Observations With In Situ Electron Density Variations as Measured by the Swarm Satellites. Radio Science, 54(10), 852–866. https://doi.org/10.1029/2018RS006734
    Oss~~0w, S. L. (1981). Spread-F theories-a review. In Joumol of Amuxpheti and Ternstrial Physics (Vol. 43, Issue 516).
    Patil, A., Nade, D., Taori, A., Pawar, R., Pawar, S., Nikte, S., & Pawar, S. (2023). A Brief Review of Equatorial Plasma Bubbles. Space Science Reviews, 219(1).
    Perreault, P. (1978). A study of geomagnetic storms (Vol. 54). https://academic.oup.com/gji/article/54/3/547/611589
    Prikryl, P. (2014). GPS phase scintillation at high latitudes during geomagnetic storm of 17-18 March 2015. Journal of Geophysical Research : Space Physics, 5685–5699. https://doi.org/10.1002/2014JA019935.Received
    Prikryl, P., Ghoddousi-Fard, R., Kunduri, B. S. R., Thomas, E. G., Coster, A. J., Jayachandran, P. T., Spanswick, E., & Danskin, D. W. (2013). GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm. Annales Geophysicae, 31(5), 805–816. https://doi.org/10.5194/angeo-31-805-2013
    Priyadarshi, S. (2015). A Review of Ionospheric Scintillation Models. In Surveys in Geophysics (Vol. 36, Issue 2, pp. 295–324). Kluwer Academic Publishers. https://doi.org/10.1007/s10712-015-9319-1
    Rao, P. V. S. R., Niranjan, K., Prasad, D. S. V. V. D., Krishna, S. G., Uma, G., & Rao, R. (2006). On the validity of the ionospheric pierce point (IPP) altitude of 350 km in the Indian equatorial and low-latitude sector. In Ann. Geophys (Vol. 24). www.ann-geophys.net/24/2159/2006/
    Rino, C. L. (1979). A power law phase screen model for ionospheric scintillation: 1. Weak scatter. Radio Science, 14(6), 1135–1145. https://doi.org/10.1029/RS014i006p01135
    Sawadogo, Y., Kaboré, M., Koala, S., Mandé, A., & Zerbo, J. L. (2023). Total Electron Content Diurnal and Seasonal Variations and Response to Solar Events at Koudougou Station in Burkina Faso. International Journal of Geosciences, 14(09), 827–839. https://doi.org/10.4236/ijg.2023.149044
    Scott, C. J., & Stamper, R. (2015). Global variation in the long-term seasonal changes observed in ionospheric F region data. Annales Geophysicae, 33(4), 449–455. https://doi.org/10.5194/angeo-33-449-2015
    Sejima, H., Hosokawa, K., Nakata, H., Chum, J., Lin, C. H., & Lin, J. T. (2023). Simultaneous observations of equatorial plasma bubbles with an all-sky airglow imager and a HF Doppler sounding system in Taiwan. Earth, Planets and Space, 75(1). https://doi.org/10.1186/s40623-023-01908-2
    Sridharan, S. (2017). Solar and lunar tidal variabilities in GPS-TEC and geomagnetic field variations: Seasonal as well as during the sudden stratospheric warming of 2010. Journal of Geophysical Research: Space Physics, 122(4), 4571–4587. https://doi.org/10.1002/2016JA023196
    Sultan, P. J. (1996). Linear theory and modeling of the Rayleigh‐Taylor instability leading to the occurrence of equatorial spread F . Journal of Geophysical Research: Space Physics, 101(A12), 26875–26891. https://doi.org/10.1029/96ja00682
    Thammavongsy, P., Supnithi, P., Myint, L. M. M., Hozumi, K., & Lakanchanh, D. (2023). Equatorial spread-F forecasting model with local factors using the long short-term memory network. Earth, Planets and Space, 75(1). https://doi.org/10.1186/s40623-023-01868-7
    Tsai, H.-F., Liu, J.-Y., Tsai, W.-H., & Liu, C.-H. (2001). Seasonal Variations of the Ionospheric Total Electron Content in Asian Equatorial Anomaly Regions. Journal of Geophysical Researchh, 106, 363–369.
    Tsai, L. C., Su, S. Y., Lv, J. X., Bullett, T., & Liu, C. H. (2022). Multi-Station and Multi-Instrument Observations of F-Region Irregularities in the Taiwan–Philippines Sector. Remote Sensing, 14(10). https://doi.org/10.3390/rs14102293
    Wernik, A. W., & Yeh, K. C. (1994). Chaotic behavior of ionospheric scintillation: Modeling and observations. Radio Science, 29(1), 135–144. https://doi.org/10.1029/93RS01828
    Woodman, R. F., & La Hoz, C. (1976). RADAR OBSERVATIONS OF F REGION EQUATORIAL IRREGULARITIES. J Geophys Res, 81(31), 5447–5466. https://doi.org/10.1029/JA081i031p05447
    Wright, J. W. (1962). Dependence of the Ionospheric F Region on the Solar Cycle. Nature, 194, 461–462.
    Xiong, C., Park, J., Lühr, H., Stolle, C., & Ma, S. Y. (2010). Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Annales Geophysicae, 28(9), 1647–1658. https://doi.org/10.5194/angeo-28-1647-2010
    Yokoyama, T. (2017). A review on the numerical simulation of equatorial plasma bubbles toward scintillation evaluation and forecasting. In Progress in Earth and Planetary Science (Vol. 4, Issue 1). Springer Berlin Heidelberg. https://doi.org/10.1186/s40645-017-0153-6
    Zhang, Z., Wang, N., Liu, A., Li, Z., Li, A., Wang, L., & Zhang, Y. (2025). Assessing 1-Second ROTI for Ionospheric Perturbation Monitoring Using Real-Time Multi-GNSS Data in China. Space Weather, 23(2). https://doi.org/10.1029/2024SW004187

    QR CODE
    :::