跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林庭安
Ting-an Lin
論文名稱: 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
Effects of the LiCoO2 particle size and morphology on the performance of lithium-ion batteries
指導教授: 曾重仁
Chung-jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 73
中文關鍵詞: 鋰離子電池LiCoO2球磨奈米顆粒尺度效應
外文關鍵詞: Li-ion battery, size effect, nano powder, ball-milling, LiCoO2
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為將商用鋰離子電池陰極材料LiCoO2 (Nippon Chem.Ind.),利用恆溫濕式球磨技術進行研磨,以降低粒徑尺寸。研磨介質為丙酮溶液與0.1 mm 球形釔安定化氧化鋯,研磨腔槽維持在氮氣環境,腔體溫度維持在15 ℃,控制球磨時間與轉速,以得到不同粒徑之陰極粉體。藉由SEM 觀察,在研磨時間與轉速提升下,LiCoO2 粉體尺寸能由原本20 μm 降低至12 nm 附近,藉由粉體與鋯珠相互碰撞,產生的剪切力與衝擊力達到降低尺寸與粒徑分布集中;另外粉體
    產物,外型由多角形轉變為球形,振實密度可從2.53 上升至3.31 g/cm3。
    材料檢測方面,由XRD 觀察,材料隨著球磨時間與轉速的增加,繞射峰強度降低且有寬化情形發生,但並無雜相產生,這顯示LiCoO2 粉體經球磨過程後,可使尺寸降低且保持完整材料特性;在TEM 觀察下,LiCoO2 材料層狀結構之CoO2 層間距離,會因球磨的運轉能量增加而導致距離縮短,並比對XRD繞射圖分析所獲得之資訊,讓實驗觀察與理論推理能相輔相成。
    電池性能檢測方面,不同粒徑之粉體中,以尺寸最小者電池性能最佳,於充放電截止電壓分別為4.3 與3 V,0.2 C-rate 的測試條件下,商用材料20 μm粉體,初始電容量為145 mAh/g,但在11 次循環充放電後,電容量下降至原來的80 %;經球磨後所得12 nm 球形粉體材料,電容量能有189 mAh/g表現,並在30 次循環充放電後,電容量僅損失16 %,且較能承受3 C-rate 大電流充放電。
    在其它檢測方面,由四點探針導電度儀及比表面積分析結果發現,球磨後之LiCoO2 奈米級粉體具有高導電度與比表面積,導電度可提升至原本材料的10 倍以上,且比表面積可達37 m2/g。


    Lithium rechargeable batteries are widely used in many portable devices, such as cellular phones and computers. One method to improve the power density is to use very fine spherical particles in the cathode.
    In this study, various sizes of LiCoO2 powders are successfully prepared by using the mechanical ball-milling method. The particle size is controlled by the rotation rate and milling time. The structure and morphology of the particles are analyzed and characterized by X-ray diffraction, scanning electron microscope, high resolution transmission electron microscope, energy dispersive spectrometer, and conductivity test. It is found that the discharge capacities of all coin cells made of the ball-milled powders are higher than that of cells made of commercial powders. Furthermore, the cycle performance of the cell using nano-sized LiCoO2 powders is also better when tested at discharge rates 0.2 to 3 C.
    It is concluded that the smaller size and spherical shape of particles contribute to the enhancement of reliability by increasing the surface area for intercalation site, and hence overcome the kinetic problems in high charge-discharge rate by increasing the lithium ion diffusion rate in the electrode.

    封面首頁………………..……………………………………………………………I 中文摘要……………….……………………………………………………………II 英文摘要……………………………………………………………………………III 誌謝…………………………………………………………………………………IV 目錄……………………………………………………………………………….....V 表目錄……………………………………………………………………………..VII 圖目錄…………………………………………………………………………….VIII 第一章 緒論………………………………………………………………………..1 1.1 前言…………………………………………………………………….........1 1.2 鋰離子電池發展簡介……………………………………….........................3 1.3 研究目的及架構……………………………………….................................5 第二章 文獻回顧……………………………………………………….……….…7 2.1 LiCoO2材料的發現與結構……………………………………………….…7 2.2球磨對LiCoO2材料的影響…………………………………………………9 2.3 LiCoO2粉體尺寸對電池性能的影響……………………………………...10 2.4 LiCoO2球形粉體對電池性能的影響...………………………..…………..18 第三章 實驗方法…………………………………………………………………23 3.1實驗儀器設備………………………………………………………………23 3.2實驗藥品器材……………………………………………………...….……24 3.3實驗步驟……………………………………………………………………25 3.4材料鑑定分析………………………………………………………………26 3.4.1X光繞射儀……………………………………………………………26 3.4.2掃瞄式電子顯微鏡…………………………………………...………26 3.4.3能量散射光譜分析儀…………………………………………...……26 3.4.4高解析穿透式電子顯微鏡………………………………………...…27 3.4.5氮氣吸附孔隙儀…………………………………………………...…27 3.4.6雷射光繞射粒徑分析儀……………………………………...………27 3.4.7導電度測試……………………………………………………...……28 3.5電池性能測試………………………………………………………………29 第四章 結果與討論………………………………………………………………32 4.1球磨環境對LiCoO2材料之影響……………………………………..….…33 4.2粉體粒徑尺寸與分布………………………………………………………45 4.3 SEM觀察粉體表面形態與粒徑分布…………………………………...…49 4.4 XRD分析材料結構………………………………………………………...53 4.5 TEM觀察LiCoO2顆粒層狀結構………………………………………..…56 4.6 LiCoO2之元素含量分析………………………………………………...…58 4.7其它相關鑑定與測試………………………………………………………60 4.8電池性能評估………………………………………………………………60 第五章 結論………………………………………………………………………67 參考文獻……………………………………………………………………………70

    [1] C. Brissot, M. Rosso, J. -N. Chazalviel, and S. Lascaud, “Dendritic growth mechanisms in lithium/polymer cells,” Journal of Power Sources, Vol. 81-12, pp. 925-929, (1999)
    [2] D. W. Murphy, F. J. DiSalvo, J. N. Carides, and J. V. Waszczak, “Topochemical reactions of rutile related structures with lithium,” Material Research Bulletin, Vol. 13, pp.1395-1402, (1978)
    [3] K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, “LixCoO2(0<x<1): A new cathode material for batteries of high energy density,” Material Research Bulletin, Vol. 15, pp. 783-789, (1980)
    [4] H. J. Orman and P. J. Wiseman, “Cobalt (Ⅲ) lithium-oxide, colio2-structure refinement by power neutron-diffraction,” Acta Crystallographica, Vol.40, pp. 12-16, (1984)
    [5] E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner, and H. W. Lin, “A rechargeable Li/LixCoO2 cell,” Journal of Power Sources, Vol. 21, pp. 25-31, (1987)
    [6] M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough, and P. Grover, “Synthesis and structure characterization of the normal spinel Li[Ni2O4],” Material Research Bulletin, Vol. 20, pp. 1137-1146, (1985)
    [7] A. Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi, and M. Leonini, “Solid-state reaction study on the system Ni-Li2CO3,” Solid State Ionics, Vol. 32-33, pp. 398-408, (1989)
    [8] J. M. Tarascon, E. Wang, and F. K. Shokoohi, “The spinel phase of LiMn2O4 as a cathode in secondary lithium cells,” Journal of The Electrochemical Society, Vol. 138, pp. 2859-2864, (1991)
    [9] J. M. Tarascon and D. Guyomard, “The Li1+xMn2O4/C rocking-chair system: A review,” Electrochimical Acta, Vol. 38, pp. 1221-1231, (1993)
    [10] A. Manthiram and J. Kim, “Low temperature synthesis of insertion oxides for lithium batteries,” Chemistry of Materials, Vol. 10, pp. 2895-2909 (1998)
    [11] Y. Takeda, K. Nakahara, M. Nishijima, N. Imanashi, O. Yamamoto, M. Takano, and R. Kanno, “Sodium deintercalation from sodium iron oxide Material Research Bulletin,” Vol. 29, pp. 659-666, (1994)
    [12] H. F. Wang, Y. I. Jang, B. Y. Huang, D. R. Sadoway, and Y. M. Chiang, “TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries,” Journal of The Electrochemical Society, Vol. 146, pp. 473-480 (1999)
    [13] E. Plichita, S. Slane, M. Uchiyama, M. Salomon, D. Chua, W. B. Ebner and H.W. Lin, “An improved Li/LixCoO2 rechargeable cells,” Journal of The Electrochemical Society, Vol. 136, pp.1865-1869, (1989)
    [14] G. G. Amatucci, J. M. Tarascon, and L. C. Klein, “Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries,” Solid State Ionics, Vol. 83, pp. 167-173, (1996)
    [15] M. Armand and J. M. Tarascon, “Building better batteries,” Nature, Vol. 451, pp. 652-657, (2008)
    [16] J. B. Goodenough, K. Mizushima, and T. Takeda, “Solid-solution oxides for storage-battery electrodes,” Japanese Journal of Applied Physics, Vol. 19,pp. 305-313, (1980)
    [17] M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough, and P. Grover, “Synthesis an structural characterization of the normal spinel Li[Ni2]O4,’ Material Research Bulletin, Vol. 20, pp. 1137-1146, (1985)
    [18] S. H. Yang, L. Croguennec, C. Delmas, E. C. Nelson, and M.A. Okeefe, “Atomic resolution of lithium ions LiCoO2, ” Nature Materials, Vol. 2, pp. 464-467, (2003)
    [19] A. Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi, and M. Leonini, “Solid-state reaction study on the system Ni-Li2CO3,” Solid State Ionics, Vol. 398, pp. 32-33, (1989)
    [20] J. Ying, C. Jiang, and C. wan, “Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries”, Journal of Power Sources, Vol.129, pp. 264-269, (2004)
    [21] Y. Z. Li, Z. Zhou, J. X. Ren, C. Ye, X. P. Gao, and J. Yan, “Effect of ball mill on preparation and electrochemical performance of rechargeablelithium battery LiVPO4F cathode material,” The Chinese Journal of Nonferrous Metals, Vol. 15, pp. 70-73, (2005)
    [22] Y. Zhao, D. Xia, Y. Li, and C. Yu, “Investigation of high-rate spherical LiCoO2 with mesoporous structure via self-assembly in microemulsion,” Electrochemical and Solid-State Letters, Vol. 11(3), A30-A33, (2008)
    [23] Z. Wang, H. Dong, L. Chen, Y. Mo, and X. Huang, “Understanding mechanism of improved electrochemical performanceof surface modified LiCoO2,” Solid State Ionics, Vol. 175, pp. 239-242, (2004)
    [24] C. H. Lu, S. W. Liu, “Influence of the particle size on the electrochemical properties of lithium manganese oxide,” Journal of Power Sources, Vol. 97, pp. 458-460, (2001)
    [25] 王憲程, 呂宗昕, 台大工程學刊, “奈米科技與鋰離子二次電池電極材料,” 國立臺灣大學, 第八十四期, 民國九十一年二月, 第129-135頁
    [26] Y. K. Sun, I. H. Oh, S. A. Hong, “Synthesis of ultrafine LiCoO2 powders by sol-gel methode,” Journal of Material Science, Vol. 31, pp. 3617-3621, (1996)
    [27] S. P. Sheu, C. Y. Yao, J. M. Chen, and Y. C. Chiou, “Influence of the LiCoO2 particle size on the performance of lithium-ion batteries”, Journal of Power Sources, Vol. 68, pp. 533-535, (1997)
    [28] T. Kawamura, M. Makidera, S. Okada, K. Koga, N. Miura, and J. I. Yamaki, “Effect of nano-size LiCoO2 cathode powders on Li-Ion cells,” Journal of Power Sources, Vol. 146, pp. 27-32, (2005)
    [29] M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, and I. Honma, “Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode,” Journal of the American Chemical Society, Vol. 129, pp. 7444-7452, (2007)
    [30] J. Ying, J. Gao, C. Jiang, C. Wan, X. M. He, “Research and development of preparing spherical cathode materials for lithium ion batteries by controlled crystallization methode,” Journal of Inorganic Materials, Vol. 21, pp. 291-297, (2006)
    [31] P. He, H. Wang, L. Qi, and T. Osaka, “Synthetic optimization of spherical LiCoO2 and precursor via uniform-phase precipitation,” Journal of Power Sources, Vol. 158, pp. 529-534, (2006)
    [32] 卓永達, 碩士論文, “以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究,” 國立中央大學, 中華民國台灣 (2002)
    [33] A. Calka, and D. Wexler, “Mechanical milling assisted by electrical discharge,” Nature, Vol. 419, pp. 147-151, (2002)

    QR CODE
    :::