| 研究生: |
藍鈺婷 Yu-Ting Lan |
|---|---|
| 論文名稱: |
新冠肺炎 (COVID 19) 對醫院附近房價的影響-以新竹地區為例 |
| 指導教授: |
劉錦龍
Jin-Long Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 產業經濟研究所在職專班 Executive Master of Industrial Economics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 新冠肺炎 、醫院 、新竹 、房價 、迎毗設施 、鄰避設施 、差異中的差異 |
| 外文關鍵詞: | COVID-19, hospital, Hsinchu, housing prices, YIMBY, NIMBY, difference-in-differences method |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣在2003年遭遇SARS的流行性傳染威脅,當時人人自危,又2003年4月和平醫院被無預警封院,住在醫院附近的居民深陷恐懼;2020年年初以來,新冠肺炎疫情席捲全球,中央流行疫情指揮中心呼籲民眾避免不必要的探病,若是非急迫性的醫療需求或檢查,應延後處理,減少進醫院的次數來降低被傳染的風險。醫院是否為嫌惡設施,一直以來眾說紛紜,而在新冠肺炎疫情的升溫下,是否更左右民眾在挑選不動產時的抉擇。
本研究透過直線距離模型、距離間距模型及差異中的差異法(DID)模型來探討新冠肺炎發生前後對距離醫院不同距離的房價帶來的影響。在第一組DID模型裡,將距離最近醫院距離限縮在2公里內比較實驗組與控制組時,可以發現實驗組的房價確實會因疫情影響,而較控制組的房價下跌,但若是將範圍放大至4公里時,不論是直線距離模型、距離間距模型或第二組及第三組DID模型,結果皆呈現相反或不具統計顯著性,可能係因目前新冠肺炎疫情尚未停止,購屋者多半會審慎思考病毒傳染的風險性,而減少購買醫院宅。
Taiwan was threatened by the SARS in 2003. Everyone was in danger at the time. In April 2003, Taipei City’s Heping Hospital was closed without warning. Residents living near the hospital were in deep fear. In the beginning of 2020, the COVID-19 began to spread widely. The government appeals to the public to avoid unnecessary hospital visits. Whether a hospital is a Yes-In-My-Back-Yard(YIMBY) or a Not-In-My-Back-Yard(NIMBY) has always been divergent. So, we discuss that people will change their idea of buying a real estate besides the hospital due to the impact of the COVID-19 or not.
This study uses the straight-line distance model, the spacing distance model and the DID models to discuss the impact of the COVID-19 on housing prices at different distances from the hospital before and after the outbreak. In the first group of DID models, when comparing the experimental group with the control group, the distance to the nearest hospital is limited to 2 kilometers. The house price of the experimental group will indeed be lower than the house price of the control group due to the impact of the epidemic. But if the range is enlarged to 4 kilometers, whether it is the straight-line distance model, the spacing distance model or the second and third groups of DID models, the results show the opposite or are not statistically significant. It may be because the COVID-19 has not stopped, and most home buyers will carefully consider the risk of virus infection and reduce the purchase of the house near the hospital.
中文部分
1. 王皓薇(2019),「醫學中心與住宅價格關係之研究-以高雄市為例」,國立中山大學經濟學研究所碩士論文。
2. 李泓見、張金鶚、花敬群(2006),「台北都會區不同住宅類型價差之研究」,《臺灣土地研究》,9(1): 63-87。
3. 李泳龍、黃宗誠、戴政安、李善將(2009),「醫學中心對鄰近住宅環境影響之研究」,《建築與規劃學報》,10(1): 75-94。
4. 李春長、游淑滿、張維倫(2012),「公共設施、環境品質與不動產景氣對住宅價格影響之研究兼論不動產景氣之調節效果」,《住宅學報》,21(1): 67–87。
5. 林左裕、陳慧潔、蔡永利(2010),「影響住宅大樓價格因素之探討」,《評價學報》,3: 13–23。
6. 林忠樑.林佳慧(2014),「學校特徵與空間距離對周邊房價之影響分析-以台北市為例」,《經濟論文叢刊》,42(2): 215–271。
7. 張金鶚(2013),《房地產是一輩子的事》,226-230,台北:金尉。
8. 張莉君(2016),「迎毗設施及鄰避設施對房屋價格影響之研究–以新北市板橋區及新莊區為例」,國立中央大學產業經濟研究所碩士論文。
9. 徐佩如(2017),「探討變電所對於鄰近房價之影響–以臺北市為例」,國立中央大學產業經濟研究所碩士論文。
10. 梁仁旭(2012),「不動產價值逆折舊之探討」,《住宅學報》,21(2): 71–90。
11. 楊宗憲、蘇倖慧(2011),「迎毗設施與鄰避設施對住宅價格影響之研究」,《住宅學報》,20(2): 61–80。
英文部分
1. Dziauddin, Faris. 2014. “The Determinants of House Prices in the Klang Valley, Malaysia.” Perspektif: Jurnal Sains Sosial Dan Kemanusiaan, 6(1): 70–80.
50
2. Peng, Ti-Ching, and Ying-Hui Chiang. 2015. “The non-linearity of hospitals’ proximity on property prices: experiences from Taipei, Taiwan.” Journal of Property Research, 32(4): 341-361.
3. Rivas, R., Patil, D., Hristidis, V., Barr, J.R., and Srinivasan, N. 2019.“The impact of colleges and hospitals to local real estate markets.”Journal of Big Data, 6:1-24.
4. Seim, David. 2017.“Behavioral Responses to Wealth Taxes: Evidence from Sweden.” American Economic Journal: Economic Policy, 9(4): 395-421.
5. Votsis, Athanasios, and Adriaan Perrels. 2015. “Housing prices and the public disclosure of flood risk: a difference-in-differences analysis in Finland.” The Journal of Real Estate Finance and Economics, 53: 450–471.
6. Wang, Daikun, Victor J. Li, and Huayi Yu. 2020.“Mass Appraisal Modeling of Real Estate in Urban Centers by Geographically and TemporallyWeighted Regression: A Case Study of Beijing’s Core Area”Land, 9(5):143.
7. Wang, Bing Bing. 2021.“How Does COVID-19 Affect House Prices?A Cross-City Analysis”Journal of Risk and Financial Management, 14(2), 1-15.
8. Xu, Tao, and Ming Zhang. 2016.“Tailoring empirical research on transit access premiums for planning applications.”Transport Policy, 51: 49-60.
參考網站
1. 中央銀行金融統計https://www.cbc.gov.tw/tw/np-521-1.html
2. 內政部統計月報https://ws.moi.gov.tw/001/Upload/OldFile/site_stuff/321/1/month/month.html
3. 內政部不動產資訊平台https://pip.moi.gov.tw/V3/E/SCRE0301.aspx
4. 新竹縣政府https://www.hsinchu.gov.tw/
5. 新竹市政府https://www.hccg.gov.tw/ch/index.jsp
6. 衛生福利部https://www.mohw.gov.tw/mp-1.html
7. 衛生福利部疾病管制署https://www.cdc.gov.tw/