| 研究生: |
陳元任 Yuan-Jen Chen |
|---|---|
| 論文名稱: |
熱管做為熱傳增強元件之金屬氫化物儲氫容器吸氫熱流模擬研究 Simulation of Heat and Mass Transfer during hydrogen absorption in a storage canister Equipped with a Heat Pipe |
| 指導教授: |
鍾志昂
Chih-Ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 熱管 、金屬氫化物 、模擬 、吸氫 、儲氫容器 |
| 外文關鍵詞: | Heat pipe, storage Canister, hydrogen, absorption, simulation |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文為LaNi5儲氫罐之吸氫過程進行建模與數值模擬研究,儲氫罐內部分成上下兩種結構,上層為提供儲氫合金因為吸氫膨脹所預留的膨脹區,下層則由儲氫合金構成的多孔性介質區。本文對儲氫合金物理特性進行適當的假設,以能量方程式描述合金吸氫時放熱反應所造成的儲氫罐溫度變化情形。氫氣與合金質量的變化以連續方程式描述。至於氫氣流場的描述,在多孔性介質的合金區與膨脹區分別使用布里克曼-佛許海默與那維爾-史托克斯方程式。最後再藉由COMSOL Mutilphysics 3.5a 利用有限元素法進行數值模擬分析。模擬結果並與文獻實驗比對,以驗證模型的正確性。
由模擬分析得知,添加熱管與內鰭片的儲氫罐在相同條件下整體吸氫速率較中空圓柱型儲氫罐快。原因為中空圓柱型儲氫罐中心的熱在吸氫過程中較不易傳出,所以其吸氫平衡壓較高,因而不易進行吸氫反應。添加熱管與內鰭片的儲氫罐整體散熱能力較佳,故整體吸氫速率較快。
由整個吸氫過程的模擬分析得知,氫氣在膨脹區大致上會有四種流場分佈情形,主要原因為入口的氫氣慣性力與浮力抗衡所造成的結果。至於參數分析的部份,固定鰭片厚度而比較不同半徑長度的影響,發現鰭片半徑越長的儲氫罐整體吸氫速率越快;而固定鰭片半徑長度而比較不同厚度的影響,發現鰭片厚度越厚的其整體吸氫速率越快。藉由本模擬亦可得知熱管的熱傳極限需求,有助於儲氫罐設計製做時熱管的選取,如果需求熱傳量超過熱管的熱傳極限,則熱管只對後期的吸氫速率有些微幫助。
A simulation study of the hydrogen absorption processes using LaNi5 hydrogen storage alloy is presented. The hydrogen storage canister is assumed to comprise two physical domains, which includes an expansion volume atop an alloy bed. The expansion volume provides the spare space which allow for alloy to expand during the absorption processes. The alloy bed is treated as a porous medium. The energy equations are used to describe the temperature changes induced by the heat release during the hydriding processes which causes the alloy''s temperature to change with time. The continuity equations are adopted to describe the mass balance between the alloy and hydrogen. The Brinkman-Forchheimer and Navier-Stokes equations are used to describe the gas flow within the porous medium and expansion volume, respectively. The mathematical model developed is solved using a finite element code, COMSOL Multiphysics 3.5a. To verify the model, results from simulation are compared with experimental data.
Results show that in the same conditions, the canister with heat pipe and fins absorbs hydrogen faster than the hollow one. This is because the heat pipe and fins help transfer heat inside out, so the equilibrium pressures of the alloy would be lower and the absorbing rates would be higher in the finned canister than in the hollow one. Results also show the entire period may be divided into four stages according to the hydrogen flow patterns, which is the outcome of the competition between the inertia and buoyancy forces in the expansion volume. Parameter analyses are also performed on the absorption rates. Results show the larger the diameter and thickness of the fins, the faster the absorption rates. The model can be applied to evaluate the request for the power limit of the instored heat pipe. The heat pipe would work when the heat transfer rates through the pipe are less than the power limit. Otherwise, the heat pipe would increase the absorption rates only in the very final stage of the hydriding processes.
Alazmi, B. and Vafai, K., “Analysis of variants within the porous media transport models,” Journal of Heat Transfer 122 (2000) 303-326.
Aldas, K., Mat, D. and Kaplan, Y., “ A three-dimensional mathematical model for absorption a metal hydride bed,” International Journal of Hydrogen Energy 27 (2002) 1063-1069.
Askri, F., Salah, M. B., Jemni, A. and Nasrallah, S. B., “ Optimization of hydrogen storage in metal-hydride tanks,” International Journal of Hydrogen Energy 34 (2009) 897-905.
Botzung, M., Chaudourne, S., Gillia, O., Perret, C., Latroche, M., Percheron-Guegan, A. and Marty, P., “ Simulation and experimental validation of a hydrogen storage tank with metal hydrides,” International Journal of Hydrogen Energy 33 (2008) 98-104.
Chung, C. A. and Ho, C. J., “ Thermal-fluid behavior of the hydriding and dehydriding processes in a metal hydrogen storage canister,” International Journal of Hydrogen Energy 34 (2009) 4351-4364.
Chung, C. A. and Lin, Ci-Siang, “ Prediction of hydrogen desorption performance of Mg2Ni hydride reactors,” International Journal of Hydrogen Energy 34 (2009) 9409-9423.
Freni, A., Cipiti, F. and Cacciola, G., “ Finite element-based simulation of a metal hydride-based hydrogen storage tank,” International Journal of Hydrogen Energy 34 (2009) 8574-8582.
Ha, M. Y., Kim, I. K., Song, H. D., Sung, S. and Lee, D. H., “ A numerical study of thermo-fluid phenomena in metal hydride beds in the hydriding process,” International Journal of Heat and Mass Transfer 47 (2004) 2901-2912.
Incropera, F. P., Dewitt, D. P., Bergman, T. L. and Lavine, A. S., Fundamentals of Heat and Mass Transfer. 6th. New York: John Wiley and Sons (2007) pp 425-426
Jemni, A. and Nasrallah, S. B., “ Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor,” International Journal of Hydrogen Energy 20 (1995a) 43-52.
Jemni, A., Nasrallah, S. B., Lamloumi J., “ Experimental and theoretical study of a metal-hydrogen reactor,” International Journal of Hydrogen Energy 24 (1999) 631-644.
Kobus, C. J. and Shumway, G., “ An experimental investigation into impinging forced convection heat transfer from stationary isothermal circular disks,” International Journal of Heat and Mass Transfer 49 (2006) 411-414
Laurencelle, F. and Goyette, J., “ Simulation of heat transfer in a metal hydride reactor with aluminium foam,” International Journal of Hydrogen Energy 32 (2007) 2957-2964.
MacDonald, B. D. and Andrew, M. R., “ Experimental and numerical analysis of dynamic metal hydride hydrogen storage systems,” Journal of Power Sources 174 (2007) 282-293.
MacDonald, B. and Rowe, A., “ Impacts of external heat transfer enhancements on metal hydride storage tanks,” International Journal of Hydrogen Energy 31 (2006b) 1721-1731.
Martin, M., Gommel, C., Borkhart, C. and Fromm, E., “ Absorption and desorption kinetics of hydrogen storage alloys,” Journal of Alloys and Compounds 238(1996) 193-201.
Mat, D. and Kaplan, Y., “ Numerical study of hydrogen absorption in an Lm–Ni5 hydride reactor,” International Journal of Hydrogen Energy 26 (2001) 957-63.
Munson, B. R., Young, D. F. and Okiishi, T. H., Fundamentals of Fluid Mechanics. 5th . New York: John Wiley and Sons (2006) pp 761
Muthukumar, P., Satheesh, A., Linder, M., Mertz, R. and Groll, M., “ Stuies on hydriding kinetics of some La-based metal hydride alloys,” International Journal of Hydrogen Energy 34 (2009) 7253-7262.
Nakagawa, T., Inomata, A., Aoki, H. and Miura, T., “ Numerical analysis of heat and mass transfer characteristics in the metal hydride bed,” International Journal of Hydrogen Energy 25 (2000) 339-350.
Nasrallah, S. B. and Jemni, A., “ Heat and mass transfer models in metal-hydrogen reactor,” International Journal of Hydrogen Energy 22 (1997) 67-76
Reay, D. A. and kew, P. A., Heat pipe: Theory, Design and Applications.5th .Oxford: Butterworth-Heinemann, 2006.
Sandrock, G., “ A panoramic overview of hydrogen storage alloys from a gas reaction point of view, ” Journal of Alloys and Compounds 293 (1999) 877-888.
White, F. M., Fluid mechanics. 4th Ed., New York: McGraw-Hill; 1999.
Yang, F., Xoamgyu, M., Jianqiang, D., Wang, Y. and Zhang, Z., “ Identifying heat and mass transfer characteristics of metal hydride reactor during adsorption-Parameter analysis and numerical study,” International Journal of Hydrogen Energy 33 (2008) 1014-1022.
Züttel, A., “ Materials for hydrogen storage,” Materials Today (2003) September 24-33.
曲新生、陳發林,氫能技術,五南出版社,2006,pp.59-104
依日光譯,熱管技術理論實務,日本技術學會編,復漢出版社,1998,pp.1-29
胡子龍,儲氫材料,曉圓出版社,2006,pp.4-91
楊書聞,金屬儲氫罐熱傳增強設計與實驗分析,國立中央大學能源工程研究所碩士論文,2011