跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林聖棋
Sheng-Chi Lin
論文名稱: 脈衝雷射於組織治療之應用
Interaction of Pulsed Lasers andTissues in Tissue Treatments
指導教授: 曾重仁
Chung-Jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 71
中文關鍵詞: 光動力療法燒蝕組織雷射輻射
外文關鍵詞: radiation, photodynamic therapy, ablation, tissue, laser
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用模擬真實情況的數值模型,研究脈衝雷射照射活
    體組織的影響。文章初始比對現有文獻的實驗資料,驗證
    本模型的精確度,所得結果發現在燒灼及熱凝結的預測深
    度上,在低入射雷射能量,與實際實驗值相當吻合,而在
    高入射雷射能量的分析上發現,在能量超過30 J/cm2時,
    實驗和模擬間的誤差值會隨著能量的增大而變大。之後進
    一步研究在組織燒蝕的臨床治療中脈衝時間,入射能量和
    脈衝頻率等參數,發現入射能量和燒灼的深度成正比,而
    脈衝頻率會因能量集中的效果,對燒灼深度會有影響,但
    幅度變化並不大,在脈衝時間的研究指出,此參數的變化
    並不會產生明顯的效果。
    在分析低能量雷射對皮膚組織溫升的效應方面,模型中利
    用將皮膚組織分層設定的方式,觀察出皮膚表面和真皮層
    的溫差相當高,臨床治療需要有效的控制脈衝的時間。在
    光動力治療方面,分析內部能量的分佈對治療效果的影響,發現在各項的參數中,提高腫瘤的吸收係數可有效的
    增加療效,且當腫瘤的深度增加時,治療的的困難度會大
    幅的提升。同時發現組織的等效衰減係數對腫瘤吸收能量
    大小的影響最大,故在臨床上的改善應以此方面為主。由
    上述的研究提供於臨床應用,具有增加效能並降低可能產
    生之副作用的貢獻。


    The physical processes of laser-tissue interactions are investigated theoretically. The radiative transfer equation (RTE) is used to
    simulate the laser propagation in tissues. The model includes emission, absorption and
    anisotropic scattering mechanisms. The RTE is
    solved by using the discrete – ordinates method.
    The energy equation is solved by the control volume based finite different method. The resulting numerical code, written in Fortran, is
    validated by comparing the results with available
    experimental measurements.
    The effects of several important parameters on
    the coagulation and ablation depths of tissue are
    studied. Results show that the ablation depth
    increases with the incidence fluence. The pulse
    frequency of the laser has small influence on the
    ablation depth. On the other hand, the ablation
    depth is not affected by t he pulse duration.
    Laser energy lasers are also used in thermal
    treatment of skins. In this work, skins are
    separated into four layers, namely, stratum
    corneum, epidermis, dermis, and subcutaneous
    tissue. The results show that, under laser
    irradiation, the temperature difference between
    the skin surface and the dermis layer is very
    large. For better control of affected area,
    appropriate pulse duration should be used.
    For applications in photodynamic therapy (PDT), the energy distribution in tissue during the
    treatment period is investigated. Increasing the
    absorption coefficient of the tumor leads to
    higher energy density in the tumor region, this
    is beneficial fort PDT. The effective attenuation coefficient of the surrounding tissue has
    profound in influence on the treatment results.

    誌謝…………………………………………………………………I 摘要…………………………………………………………………II 目錄…………………………………………………………………IV 表目錄………………………………………………………………VI 圖目錄………………………………………………………………VII 符號表………………………………………………………………X 一、緒論……………………………………………………………1 1.1研究動機與背景……………………………………1 1.2 雷射熱效應…………………………………………6 1.3 文獻回顧……………………………………………12 1.4 本文探討主題………………………………………17 二、數值模型………………………………………………………19 2.1 幾何模型……………………………………………19 2.2 程式流程……………………………………………21 2.3 統御方程式…………………………………………22 2.4 熱輻射方程式………………………………………23 2.5 判斷方程式…………………………………………26 三、數值模擬及方法…………………………………………………28 3.1 數值方法………………………………………………….28 3.2 格點驗證……………………………………………32 3.3 程式驗證……………………………………………35 四、結果與討論………………………………………………………44 4.1 雷射參數之分析……………………………………44 4.2 雷射照射組織中溫度之分佈………………………51 4.3 光動力療法之分析…………………………………57 五、結論與未來方向…………………………………………………66 六、參考文獻…………………………………………………………68 表目錄 表一:組織隨溫度改變的情況…………………………………………10 表二:數值模擬所用之係數(蛋白質)…………………………………33 表三:模型驗證之各項參數(皮膚)……………………………………40 表四:數值模擬所用之係數(骨頭)……………………………………41 表五:設定能量表面能量密度為20 J/cm2,改變每秒的脈衝波數,入射二十次的雷射脈衝 波,組織損傷深度與入射頻率………49 表六:固定每一脈衝波的能量,改變其入射時間的長短觀察其與燒蝕的關 係………………………………………49 表七:皮膚組織中各層含水量之分佈…………………………………54 表八:分析皮膚溫升預測中,所使用的各項係數……………………54 表九:使用CO2雷射照射人體皮膚組織,觀察不同入射能量與溫升 之關係……………………..……………………………………54 表十:能量0.292 J/cm2,脈衝頻率為2000 Hz及脈衝時間為110 比 較不同對流係數與表面溫度之關係……………………………55 圖目錄 圖1.1.1雷射於醫療上的應用[1]………………..………………………5 圖1.1.2冠狀動脈的治療示意圖[2]……………...……………………...5 圖1.2.1雷射與組織關係示意圖[3]…………………………………….11 圖1.2.2 雷射與組織間不同效應分界示意[4]………………………...11 圖2.1.1 模型之格點分佈………………………………………………19 圖2.2.1 能量分佈計算流程圖…………………………………………21 圖3.1.1 熱傳導方程式差分之示意圖…………………………………31 圖3.1.2 熱幅射方程式中能量方向示意圖………..………………..…31 圖3.2.1不同格點下,組織傷害深度與時間之關係,使用之相關參數 如表二…………….……………………………………...……33 圖3.2.2 在不同格點時,組織傷害深度的剖面圖,使用之相關參數如 表二……………………………………………………………34 圖3.3.1 蛋白質散射係數對coagulation深度的影響。吸收係數定為0.3 cm-1。實驗值為Thomas[22]於1996年以Ho:YAG雷射照射蛋 白質之結果…………………..………………..…………….....39 圖3.3.2蛋白質吸收係數對coagulation深度的影響。散射係數定為50 cm-1。實驗值為Thomas[22]於1996年以Ho:YAG雷射照 射蛋白質之結果…………………...………………...………39 圖3.3.3 燒蝕效率與能量之關係圖,比對Walsh[10]以CO2雷射照射 人體皮膚組織的研究,相關係數於表三...……….…………40 圖3.3.4 骨頭在雷射切割後的剖面,相較於軟性組織,其切面更為平 整[24]………………………………………………………….41 圖3.3.5 HF雷射波長為2.707 時,入射能量與燒蝕效率關係圖,使 用的各項參數列於表四…………………………….…………42 圖3.3.6波長為2.832 時,入射能量與燒蝕效率關係圖………….42 圖3.3.7波長為2.911 時,入射能量與燒蝕效率關係圖………….43 圖4.1.1 CO2雷射和Nd:YAG雷射端點能量示意圖………………….48 圖4.1.2 在同樣的能量下,利用CO2雷射和Nd:YAG霤射照射組織產 生之燒蝕及損傷深度比較圖…………………...…………….48 圖4.1.3 設定能量表面能量密度為20 J/cm2,依不同的脈衝頻率,入 射二十次的雷射脈衝波,組織損傷深度與入射頻率關係…50 圖4.2.1照射CO2雷射能量為0.219 J/cm2,脈衝頻率為2000 Hz及脈衝時間為110 ,比較皮膚表面溫度隨時間的變化關係圖..55 圖4.2.2 以CO2雷射,用2.54 J/cm2,脈衝時間0.5 s,脈衝頻率2 Hz 照射單次脈衝波後,不同層間的介面溫度隨時間變化圖...56 圖4.2.3以CO2雷射,用2.54 J/cm2,脈衝時間0.5 s,脈衝頻率2 Hz複數次脈衝波雷射照射後,各深度溫度隨時間變圖…..56 圖4.3.1 模型吸收係數之設定,斜線區即為腫瘤……………………61 圖4.3.2 當雷射入射時,組織內部吸收能量分佈之等級…………….61 圖4.3.3 對應不同的表面能量,腫瘤內部能量比值之變化………….62 圖4.3.4對應組織不同的等效衰減係數,腫瘤內部能量比值之……..62 圖4.3.5改變腫瘤的吸收係數,腫瘤內部同一深度漫射能量及腫瘤所 吸收能量之變化……………………………………………….63 圖4.3.6改變腫瘤深度,腫瘤內部能量之變化………………………63 圖4.3.7改變組織的散射因子,在組織上表面及下表面吸收能量比值的變化…..……………………………………………….…….64 圖4.3.8改變組織的散射因子,在組織內邊界吸收能比值的變化.…64 圖4.3.9改變組織的散射因子,在離中心點0.5倍的半徑距離時,吸 收能量比值隨深度的變化………………………………....…65

    1. Tratonnikov*, A. A., Ermishova, N. V. and Loschenov, V. B., “Influence of red laser irradiation on hemoglobin oxygen saturation and blood
    volume in human skin in vivo,” Proceeding of SPIE, V. 4257, Laser-Tissue
    Interaction XII, p. 57-64 (2001).
    2. http://mayohealth.org/mayo/9307/htm/angiopla.htm.
    3. Jacques, S. L. “Laser-tissue interactions: photochemical, photo-
    thermal and photomechanical,” Surg. Clin. North Am., V.72, p. 531-588 (1992).
    4. Niemz, M. H., Laser-tissue Interactions: Fundamentals and
    Applications, Springer, New York (1996).
    5. Goldman, L., Wilson, R., Hornby, P., and Meyser R. “Laser radiation
    of malignancy in man,” Cancer, V.18, p. 533-545 (1965).
    6. Grundfest, W. S., Litvack, F., Forrester, J.S., Goldenberg, T.,
    Swan, H. J., Morgenstern, L., Fishbein, M., Mcdermid, I.S., Rider, D. M.,
    Pacala, T. J., and Lauden Slager, J. B. “Laser ablation of human
    atherosclerotic plaque without adjacent tissue injury,” Journal of the
    American College of Cardiology , V.5, P. 929-933 (1985).
    7. Haase, K. K., Baumbach, A., Wehrmann, M., Duda, S., Cerullo, G.,
    Ruckle, B., Steiger, E., and Karsch, K. R. “Potential use of holmium lasers
    for angioplasty: evaluation of a new solid-state laser for ablation of
    atherosclerotic plaque,” Lasers in Surgery and Medicine, V.11, p. 232-237
    (1991).
    8. Jasen, E. D., Le, T. H., Welch, A.J. “excimer, Ho:YAG and Q-switch
    Ho:YAG ablation of aorta: acomparison of temperatures and tissue damage in
    vitro,” Applied Optics, V.32, p. 526-534 (1993).
    9. Walsh, J. T., “Er:YAG laser Ablation of Tissue: Measurement of
    Ablation Rates” Lasers in Surgery and Medicine, V.9, p.327-337 (1991).
    10. Walsh, J.T., Deutsch, T.F. “Pulsed CO2 laser tissue ablation:
    measurement of the ablation rate,” Lasers in Surgery and Medicine, V. 8 p. 264
    -275 (1988).
    11. Wilson, B. C., Patterson, M. S., and Flock, S. T. “Indirect versus
    direct techniques for the measurement of the optical properties of tissue,”
    Photochemistry and Photobiology , V.46, p. 601-608 (1987).
    12. Flock, S. T., Wilson, B. C., Patterson, M.S. “Total attenuation
    coefficients and scattering phase functions of tissues and phantom materials
    at 600 nm,” Medical Physics, V.14, p. 835-842 (1987).
    13. Karagiannis, J. L., Zhang, Z., Grossweiner, B., and Grossweiner, L.I.
    “Applications of the 1-D diffusion approximation to the optics of tissues and
    tissue phantoms,” Applied Optics, V.28, p. 2311-2317 (1989).
    14. Cheong, W.F., Prahl, S.A., and Welch, A. J. “A review of the optical
    properties of biological tissue,” IEEE Journal of Quantum Electronics, V.26,
    p. 2166-2185 (1990).
    15. Leeuwen, T. G. van, Jasen, E. D., Welch, A. J., and Borst, C.,
    “Excimer laser induced bubble: dimensions, theory and implications for laser
    angioplasty,” Lasers in Surgery and Medicine, (1995).
    16. Gerstmann, M. M., and Sagi, A., “Simulation of ablation and thermal
    damage in CO2 laser-irradiated tissue,” Proceeding of SPIE, Laser-Tissue
    Interaction, p. 214-227 (1990).
    17. Jacques, S. L., “Finite-Difference modeling of laser ablation of
    tissue”, Proceeding of SPIE, V.1882, Laser-tissue interaction IV, p422-431
    (1993).
    18. Pfefer, T. J., ”Pulsed Holmium:YAG Induced Thermal Damage in
    Albumen,” Proceeding of SPIE, V.3254, Laser-Tissue Interaction Ⅸ, p. 192
    -202, (1998).
    19. Anderson, T. N., Jessen, N. C., and Arendt-Nielsen, L.,
    “Determination of the temperature distribution in skin using a finite element
    model,” Proceeding of SPIE, V.3914, Laser-Tissue Interaction ⅩI, p. 54-65
    (2000).
    20. Choi, B., Pearce J. A., Welch, A. J., “Modeling infrared temperature
    measurements: Comparison of experimental results with simulations,”
    Proceeding of SPIE, V.3914, Laser-Tissue Interaction XI, p. 48-53 (2000).
    21. Patankar, S. V., “Numerical heat transfer and fluid flow”,
    Hemisphere publishing corporation, New York (1979).
    22. Asshauer, T., “Photothermal Denaturation of Egg White by Pulsed
    Holmium Laser,” Proceeding of SPIE, V.2681, Laser-Tissue Interaction Ⅶ, p.
    120-124, (1996).
    23. Wolbarsht, M. L., “Laser Surgery: CO2 or HF,” IEEE Journal of
    Quantum Electronics, V. QE-20, NO.12, p. 1427-1432 (1984).
    24. Clauser, C., and Clayman, L., “Effects of Exposure Time and Pulse
    Parameters onCO2 Laser Osteotomies,” Lasers in Surgery and Medicine, V.9 p.
    22-29 (1989).
    25. Chen, W. R., “Ablation of skin by Holmium: YAG laser,” Proceeding
    of SPIE, V. 2134 Laser-Tissue InteractionⅤ, p. 342-351 (1994).
    26. Venugopalan, V., “The Effect of CO2 Laser Pulse Repetition Rate on
    Tissue Ablation Rate and Thermal Damage,” IEEE Transactions on Biomedical
    Engineering, V. 38, NO. 10, p. 1049 -1052 (1991).
    27. Welch, A. J. and Martin J. C., and Gemert, V., “Optical-thermal
    Response of Laser Irradiated Tissue,” New York (1995).
    28. Cho, Y. I., Bioengineering Heat Transfer, Advances in Heat transfer,
    New York (1992).
    29. Thynell, S. T., “Discrete method in radiative heat transfer,”
    Internal Journal of Engineering science, V. 36, p. 1651-1675 (1998).
    30. Clauser, C. and Clayman, L., “Effects of exposure time and pulse
    parameters on CO2 laser osteotomies,” Lasers in Surgery and Medicine, V.9, p.
    22-29 (1989).
    31. Izatt, J. A., and Sankey, N. D., “Ablation of calcified Biological
    tissue by pulsed hydrogen fluoride laser radiation,” IEEE Journal of Quantum
    Electronics, V.26, n.12, p. 2261-2271 (1990)
    32. 蔡桓宇,數值模擬多孔性介質燃燒爐中之熱增強現象;國立中央大學碩士論文 ;
    中壢 ; 民國八十九年
    33. yand, Y., and Welch, A. J., “rate process patameters of albumen,”
    Lasers in surgery and Medicine, V.11, p.188-190, (1991).
    34. Weaver, J. A., and Stoll, A. M., “mathematical modelof skin exposed
    to htermal radiation,” Aerospace

    QR CODE
    :::