| 研究生: |
林詩潔 Shi-Jie Lin |
|---|---|
| 論文名稱: |
針對BTI系列染料所敏化之元件於電解質優化之研究 |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 電解質 、染料敏化太陽能電池 |
| 外文關鍵詞: | electrolyte, dye-sensitized solar cells |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染料敏化太陽能電池(dye-sensitized solar cells, DSC)中電解液扮演著傳遞載子和再生染料的功用,I-/I3-是目前最常見的氧化還原對,而常見的共軛陽離子為imidazolium和lithium。共軛陽離子或其他添加物能調整TiO2傳導電帶能階位置與增加TiO2膜表面覆蓋度,進而影響元件的光伏表現。本研究主要是藉由調變電解質中各成分的濃度,找出應用於本實驗室所開發之BTI系列有機染料的最佳電解質組成。BTI系列染料的LUMO能階都很低,沒有足夠驅動力將電子從染料的LUMO注入到TiO2傳導電帶能階,因此電解質成分的優化須考慮周全。以BTI-1染料為例,其LUMO只比TiO2傳導電帶能階高0.12 eV,當電解質組成條件為(0.1 M LiI, 0.6 M BMII, 0.5 M GuSCN, 0.5 M tBP, 30 mM I2)時效率只有1.74 %,但提高LiI、BMII及GuSCN濃度到 (1.0 M LiI, 1.2 M BMII, 1.0 M GuSCN)時,效率增加至4.02 %。主要是因為Li+可以降低TiO2傳導電帶能階,提高電子注入效率,增加元件之Jsc。此外,本研究也發現有兩層散射層的TiO2膜,相較一層散射層表面較平整,可增加元件之FF,因此效率也較高。
In dye-sensitized solar cells (DSC), electrolyte plays the role of transferring carrier to the counter electrode and the regeneration of the oxidized dye. The most common electrolyte used in DSC is iodide/triiodide (I-/I3-) redox couple with Imidazolium and lithium as counter cations. Counter cations and other additives in the electrolyte can adjust the level of TiO2 conduction band edge or protect the surface of TiO2 electrode to affect the photovoltaic performance of the correspond cells. The objective of this study is to seek an optimal electrolyte components to be used for a series of organic BTI-X sensitizers prepared in our Lab. These dye molecules have low LUMO level, therefore the electrolyte used should be concerned very carefully. For example BTI-1, when the electrolyte composition condition is 0.1 M LiI, 0.6 M BMII, 0.5 M GuSCN, 0.5 M tBP, 30 mM I2 the efficiency of BTI-1 base DSC is 1.74%. When the concentrations of LiI, BMII and GuSCN increase to 1.0 M LiI, 1.2 M BMII, 1.0 M GuSCN, respectively, the efficiency of the corresponding device increases to 4.02%. This result is attributed to the lowering of the TiO2 conduction band edge improvethe electrons injection from excited dye to TiO2. In addition, the study also found that cell used TiO2 film with two scattering layers shows higher FF, due to the TiO2 film with two scattering is smoother than that with one scattering layers.
1.http://www.feu.edu.tw/adms/aao/aao95/jfeu/30/3002/300205.pdf (2017年08月14日)
2.https://www.nrel.gov/pv/assets/images/efficiency-chart.png (2017年08月14日)
3.http://m.qualenergia.it/content/dye-sensitzed-solar-cells rival-conven- tional-cell-efficiency (2017年08月14日)
4.H. Tsubomura; M. Matsumura; Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 1976, 261, 402-403.
5.B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737-739.
6.M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem., 2005, 44, 6841-6851.
7.M. Law, L.-E. Greene, J.-C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solar cells “, Nature Mater., 2005, 4, 455-459.
8.V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Mater. Sci. Eng. R, 2009, 63, 81-99.
9.L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, S. Chen, F. Kong, X. Pan, L. Liang and K. Wang, “Microstructure Design of Nanoporous TiO2 Photoelectrodes for Dye-Sensitized Solar Cell Modules”, J. Phys. Chem., 2007, 111, 358-362.
10.K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa “Highly effcient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells”, Solar Energy Materials & Solar Cells, 2000, 64, 115-134.
11.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, “ Dye-Sensitized Solar Cells”, Chem. Rev., 2010, 110, 6595-6663.
12.http://rredc.nrel.gov/solar/spectra/am1.5/. (2017年08月14日)
13.M.-K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Graetzel, “Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc., 1993, 115, 6382-6390.
14.P. Péchy, T. Renouard, S.-M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.-B. Deacon, C.-A. Bignozzi and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 2001, 123, 1613-1624.
15.M. Grätzel, “Recent Advances in Sensitized Mesoscopic SolarCells”, Acc. Chem. Res., 2009, 42, 1788-1798.
16.K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-I. Fujisawab and M. Hanaya “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chem. Commun., 2015, 51, 15894-15897.
17.S.-M. Feldt, G. Wang, G. Boschloo and A. Hagfeldt, “Effects of Driving Forces for Recombination and Regeneration on the Photovoltaic Performance of Dye-Sensitized Solar Cells using Cobalt Polypyridine Redox Couples”, J. Phys. Chem. C, 2011, 115, 21500-21507.
18.A. Hauch, A. Georg, “Diffusion in the electrolyte and charge transfer reaction at the platinum electrode in dye-sensitized solar cells“, Electrochim. Acta., 2001, 46, 3457-3466.
19.李佳. “具長碳鏈釕金屬錯合物染料搭配鈷錯合物[Co(bpy)3]2+/3+應用於染料敏化太陽能電池”, 國立中央大學2014年碩士論文.
20.H. Tian and L. Sun, “Iodine-free redox couples for dye-sensitized solar cells.”, J. Mater. Chem., 2011, 21, 10592-10601.15.
21.S. Yanagida, Y. Yu and K. Manseki, “Iodine/Iodide-Free Dye- Sensitized Solar Cells”, Acc. Chem. Res., 2009, 42, 1827-1838.
22.J. Cong, X. Yang, L. Kloob and L. Sun, “Iodine iodide-free redox shuttles for liquid electrolyte-based dye-sensitized.”, Energy Enviro. Sci., 2012, 5, 9180-9194.
23.A. Fukui, R. Komiya, R. Yamanaka, A. Islam and L. Han, “Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell”, Solar Energy Materials & Solar Cells, 2006, 90, 649-658.
24.L.- M. Peter, “Dye-sensitized nanocrystalline solar cells”, Phys. Chem. Chem. Phys., 2007, 9, 2630-2642.
25.R. Stalder, D. Xie, A. Islam, L. Han, J. R. Reynolds, and K. S. Schanze, “ Panchromatic Donor–Acceptor–Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications”, Appl. Mater. Interfaces, 2014, 6, 8715-8722.
26.G. Schlichthorl, S.-Y. Huang, J. Sprague and A.-J. Frank, “Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy”, J. Phys. Chem. B, 1997,101, 8141-8155.
27.C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai, “Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability”, J. Phys. Chem. C, 2009, 113, 21779-21783.
28.Y. Shiac, Y. Wang, M. Zhang and X. Dong “Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium”, Phys. Chem. Chem. Phys., 2011, 13, 14590-14597.
29.S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “Role of Electrolytes on Charge Recombination in Dye Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple”, J. Phys. Chem. B, 2005, 109, 3480-3487.
30.C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai, “Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye Sensitized Solar Cell Performance and Stability”, J. Phys. Chem. C, 2009, 113, 21779-21783.
31.C. E. Richards, A. Y. Anderson, S. Martiniani, ChunHung Law and B. C. O’Regan, “The Mechanism of Iodine Reduction by TiO2 Electrons and the Kinetics of Recombination in Dye-Sensitized Solar Cells”, J. Phys. Chem. Lett., 2012, 3, 1980-1984.
32.http://www.ma-tek.com/zh-tw/services/index/Pro_category_06/207_9 (2017年08月14日)
33.J.-G. Chen, C.-Y. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu and K.-C. Ho, “On the photophysical and electrochemical studies of dye-sensitized solar cells with the new dye CYC-B1”, Solar Energy Materials & Solar Cells, 2008, 92, 1723-1727.
34.T. Wei, X. Sun, X. Li, H. Ågren and Y. Xie, “Systematic Investigations on the Roles of the Electron Acceptor and Neighboring Ethynylene Moiety in Porphyrins for Dye-Sensitized Solar Cells”, Appl. Mater. Interfaces, 2015, 7, 21956-21965.