跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王晟輔
Cheng-Fu Wang
論文名稱: 利用電漿輔助原子沉積法沉積奈米複合層改善塑膠基板之膜裂現象
Inhibition of Crack on Plastic Substrate by Nanolaminates Layer Deposition During Plasma Enhanced Atomic Layer Deposition
指導教授: 郭倩丞
Chien-Cheng Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 原子沉積法抗反射膜塑膠基板結晶抑制奈米複合層
外文關鍵詞: Atomic Layer Deposition, antireflection coatings, Plastic substrate, Reduce the crystallization, nanolaminates
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用電漿輔助原子沉積法沉積抗反射膜於PMMA塑膠基板,在低溫製程60ºC下使用氧氣混氬氣的氧化方式,探討HfO2、SiO2、Al2O3折射率(n)和消光係數(k)的趨勢藉此獲得最佳的製程參數,研究發現使用電漿輔助原子沉積技術在低溫60ºC下,HfO2薄膜的結晶強度會隨著ALD循環次數的增加而提高,因此在本論文研究出在HfO2薄膜中插入抑制層降低薄膜的結晶現象,經過X光繞射儀量測HfO2薄膜其結晶強度成功從2256.09下降至1.2,使用原子力顯微鏡分析薄膜表面,其薄膜粗糙度從1.25 nm下降至0.434 nm有著大幅度的改善,並透過恆溫恆濕試驗測試抗反射膜的耐久度,在溫度85 ℃與濕度85%條件下未插入抑制層的抗反射膜只維持52小時,有插入抑制層的抗反射膜,其耐久度能延長至352小時。


    In this paper, plasma-assisted atomic layer deposition method is used to coat anti-reflection film on PMMA substrate, and the oxidation method of oxygen mixed with argon plasma is used at low temperature process 60ºC, and the refractive index (n) and extinction coefficient (k) trend to obtain the best process parameters. It is found that the crystallization of HfO2 films increases with the increase of the number of ALD cycles using the plasma-assisted atomic layer deposition technology at a low temperature of 60ºC. After inserting the inhibitory layer into the HfO2 film, the crystallization of the film was successfully reduced. The HfO2 film was analyzed by X-ray diffractometer, and the crystalline strength was successfully reduced from 2256.09 to 1.2. The surface of the film was analyzed by atomic force microscopy. The roughness of the film decreased from 1.25 nm to 0.434 nm. There has been a great improvement, and the durability of the anti-reflection film is tested through the constant temperature and humidity test. Under the test at a temperature of 85 ℃ and a humidity of 85%, the anti-reflection film only lasts for 56 hours, and the anti-reflection film with inhibitory layer is extend to about 352 hours.

    目錄 中文摘要 i Abstract ii 致謝 ii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 iv 1-1前言 1 1-2研究目的與動機 5 第二章 基礎理論與文獻回顧 6 2-1原子沉積技術工作原理 6 2-1-1化學氣相沉積法 6 2-1-2原子沉積法 8 2-1-3電漿輔助原子沉積系統(PEALD) 12 2-2 奈米複合層的機械特性………………………………………...14 2-3 文獻探討 22 第三章 實驗方法與使用儀器設備 30 3-1實驗方法 30 3-1-1 實驗流程 30 3-1-2 實驗步驟 31 3-2製程設備介紹與條件 35 3-3量測儀器介紹與原理 41 3-3-1落地型UV-VIS-NIR分光光譜儀 41 3-3-2橢圓偏振儀(Ellipsometer) 42 3-3-3高解析掃描穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 44 3-3-4可程式恆溫恆濕機(Programmable Temp. & Humi. Chamber) 45 3-3-5原子力顯微鏡(Atomic Force Microscope, AFM) 46 3-3-6 X光繞射儀(X Ray Diffractometer, XRD) 47 3-3-7光學顯微鏡 (Optical Microscope, OM)……………….. 48 第四章 實驗結果與討論 49 4-1 單層膜之光學特性 49 4-2 HfO2之結晶抑制 57 4-3多層抗反射膜……………………………………………………61 4-3-1 抗反射膜之膜層結構與光學特性……………………….61 4-3-2 抗反射膜之環境測試…………………………………….65 第五章 結論 71 參考文獻 72

    參考文獻
    [1] 2020/2021年產業技術白皮書,產業篇,經濟部技術處,(2020).
    [2] 2021/2022年產業技術白皮書,產業篇,經濟部技術處,(2021).
    [3]Chi-Chung Lau, Si-Min Chou (2019). 結構光三維成像及其編碼技術.科儀新知, 219(6), 25–37.
    [4]詳解黑科技「結構光」,第三種測量方法
    Available: https://reurl.cc/yrNX6a
    [5]微陣列透鏡
    Available: https://reurl.cc/gW0n34
    Available: https://reurl.cc/KbYD0n
    [6]自由曲面元件
    Available: https://reurl.cc/o12XV5
    [7]Weiss, T., & Ebert, W. (2017). Atomic Layer Deposition for Coating of Complex 3D Optics. Optik & Photonik, 12(3), 42–45.
    [8]Neelesh K. Jain, Mayur S. Sawant,Sagar H. Nikam and Suyog Jhavar(2016). Metal Deposition: Plasma-Based Processes.Encyclopedia of Plasma Technology,722-740.
    [9]Loyer, F., Bulou, S., Choquet, P., & Boscher, N. D. (2018). Pulsed plasma initiated chemical vapor deposition (PiCVD) of polymer layers − A kinetic model for the description of gas phase to surface interactions in pulsed plasma discharges. Plasma Processes and Polymers, 1800121.
    [10]Wei, D., Lu, Y., Han, C., Niu, T., Chen, W., & Wee, A. T. S. (2013). Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. Angewandte Chemie, 125(52), 14371–14376.
    [11]Wei, D., Peng, L., Li, M., Mao, H., Niu, T., Han, C., … Wee, A. T. S. (2015). Low Temperature Critical Growth of High Quality Nitrogen Doped Graphene on Dielectrics by Plasma-Enhanced Chemical Vapor Deposition. ACS Nano, 9(1), 164–171.
    [12]Profijt, H. B., Potts, S. E., van de Sanden, M. C. M., & Kessels, W. M. M. (2011). Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(5), 050801.
    [13]Kim, H. (2011). Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films, 519(20), 6639–6644.
    [14] Shi, S., Qian, S., Hou, X., Mu, J., He, J., & Chou, X. (2018). Structural and Optical Properties of Amorphous Al2O3 Thin Film Deposited by Atomic Layer Deposition. Advances in Condensed Matter Physics, 2018, 1–10.
    [15]Leskelä, M., & Ritala, M. (2002). Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films, 409(1), 138–146.
    [16]Pakkala, A., & Putkonen, M. (2010). Atomic Layer Deposition. Handbook of Deposition Technologies for Films and Coatings, 364–391.
    [17]Schindler, P., Logar, M., Provine, J., & Prinz, F. B. (2015). Enhanced Step Coverage of TiO2 Deposited on High Aspect Ratio Surfaces by Plasma-Enhanced Atomic Layer Deposition. Langmuir, 31(18), 5057–5062.
    [18]Heil, S. B. S., van Hemmen, J. L., Hodson, C. J., Singh, N., Klootwijk, J. H., Roozeboom, F., … Kessels, W. M. M. (2007). Deposition of TiN and HfO[sub 2] in a commercial 200 mm remote plasma atomic layer deposition reactor. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25(5), 1357.
    [19]原子層沉積技術之發展與應用
    Available: https://reurl.cc/YvNnv4
    [20]Dayal, P., Savvides, N., & Hoffman, M. (2009). Characterisation of nanolayered aluminium/palladium thin films using nanoindentation. Thin Solid Films, 517(13), 3698–3703.
    [21]Costescu, R. M. (2004). Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates. Science, 303(5660), 989–990.
    [22]Mata, M., Anglada, M., & Alcalá, J. (2002). Contact Deformation Regimes Around Sharp Indentations and the Concept of the Characteristic Strain. Journal of Materials Research, 17(05), 964–976.
    [23]Misra, A., & Krug, H. (2001). Deformation Behavior of Nanostructured Metallic Multilayers. Advanced Engineering Materials, 3(4), 217–222.
    [24]Misra, A., Hirth, J. P., & Hoagland, R. G. (2005). Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Materialia, 53(18), 4817–4824.
    [25]Rao, S. I., & Hazzledine, P. M. (1999). Atomistic Simulations of Dislocation-Interface Interactions in the Cu-Ni Multilayer System. MRS Proceedings, 578.
    [27]Zhou, Q., Xie, J. Y., Wang, F., Huang, P., Xu, K. W., & Lu, T. J. (2015). The mechanical behavior of nanoscale metallic multilayers: A survey. Acta Mechanica Sinica, 31(3), 319–337.
    [28]Coy, E., Yate, L., Kabacińska, Z., Jancelewicz, M., Jurga, S., & Iatsunskyi, I. (2016). Topographic reconstruction and mechanical analysis of atomic layer deposited Al2O3/ TiO2 nanolaminates by nanoindentation. Materials & Design, 111, 584–591.
    [29]Zhang, J. Y., Zhang, P., Zhang, X., Wang, R. H., Liu, G., Zhang, G. J., & Sun, J. (2012). Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. Materials Science and Engineering: A, 545, 118–122.
    [30]Wen, S. P., Zong, R. L., Zeng, F., Gao, Y., & Pan, F. (2007). Nanoindentation investigation of the mechanical behaviors of nanoscale Ag/Cu multilayers. Journal of Materials Research, 22(12), 3423–3431..
    [31]Mara, N. A., Bhattacharyya, D., Hoagland, R. G., & Misra, A. (2008). Tensile behavior of 40nm Cu/Nb nanoscale multilayers. Scripta Materialia, 58(10), 874–877.
    [32]Lu, Y. Y., Kotoka, R., Ligda, J. P., Cao, B. B., Yarmolenko, S. N., Schuster, B. E., & Wei, Q. (2014). The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Materialia, 63, 216–231.
    [33]Zhang, J. Y., Zhang, X., Wang, R. H., Lei, S. Y., Zhang, P., Niu, J. J., … Sun, J. (2011). Length-scale-dependent deformation and fracture behavior of Cu/X (X=Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Materialia, 59(19), 7368–7379.
    [34]Was, G. ., & Foecke, T. (1996). Deformation and fracture in microlaminates. Thin Solid Films, 286(1-2), 1–31.
    [35]Hsia, K. J., Suo, Z., & Yang, W. (1994). Cleavage due to dislocation confinement in layered materials. Journal of the Mechanics and Physics of Solids, 42(6), 877–896.
    [36]Odette, G. R., Chao, B. L., Sheckherd, J. W., & Lucas, G. E. (1992). Ductile phase toughening mechanisms in a TiAl-TiNb laminate composite. Acta Metallurgica et Materialia, 40(9), 2381–2389.
    [37]Nasim, M., Li, Y., Wen, M., & Wen, C. (2020). A review of high-strength nanolaminates and evaluation of their properties. Journal of Materials Science & Technology.
    [38]Zhou, X., & Chen, C. (2016). Strengthening and toughening mechanisms of amorphous/amorphous nanolaminates. International Journal of Plasticity, 80, 75–85.
    [39]Paul, P., Pfeiffer, K., & Szeghalmi, A. (2020). Antireflection Coating on PMMA Substrates by Atomic Layer Deposition. Coatings, 10(1), 64.
    [40]Wei, Y., Xu, Q., Wang, Z., Liu, Z., Pan, F., Zhang, Q., & Wang, J. (2018). Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition. Journal of Alloys and Compounds, 735, 1422–1426.
    [41]Shestaeva, S., Bingel, A., Munzert, P., Ghazaryan, L., Patzig, C., Tünnermann, A., & Szeghalmi, A. (2016). Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications. Applied Optics, 56(4), C47.
    [42]Kim, L. H., Jang, J. H., Jeong, Y. J., Kim, K., Baek, Y., Kwon, H., … Park, C. E. (2017). Highly-impermeable Al2O3 /HfO2 moisture barrier films grown by low-temperature plasma-enhanced atomic layer deposition. Organic Electronics, 50, 296–303.
    [43]Kim, K.-M., Jang, J. S., Yoon, S.-G., Yun, J.-Y., & Chung, N.-K. (2020). Structural, Optical and Electrical Properties of HfO2 Thin Films Deposited at Low-Temperature Using Plasma-Enhanced Atomic Layer Deposition. Materials, 13(9), 2008.
    [44]Yu-Sung Hsieh, Yu-Jen Lu, Yi-San Chang. (2012). 快速橢偏單層膜計算模組開發. 科儀新知, 33(6), 40–48.
    [45]橢圓偏振儀
    Available: https://reurl.cc/g2yE5V
    [46]可程式恆溫恆濕機
    Available: https://reurl.cc/e316yM
    [47]李其紘. (2013). 原子力顯微鏡的基本介紹. 科學研習, 52(5), 18–21.
    [48]複式光學顯微鏡
    Available: https://reurl.cc/NAkAAn
    [49]李正中. (2020). 薄膜光學與鍍膜技術 (9th ed.). 藝軒圖書.
    [50]越薄越好,3D薄膜製程大挑戰:淺談原子層沈積技術
    Available: https://reurl.cc/9G2a8v
    [51]Iatsunskyi, I., Coy, E., Viter, R., Nowaczyk, G., Jancelewicz, M., Baleviciute, I., … Jurga, S. (2015). Study on Structural, Mechanical, and Optical Properties of Al2O3 -TiO2 Nanolaminates Prepared by Atomic Layer Deposition. The Journal of Physical Chemistry C, 119(35), 20591–20599.

    QR CODE
    :::