跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡亭林
Ting-lin Tsai
論文名稱: 矽鍺光電晶體與砷化鎵光電晶體之設計與特性分析
SiGe HPT and GaAs HPT Design and Characterization
指導教授: 辛裕明
Yue-ming Hsin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 97
中文關鍵詞: 光電晶體砷化鎵矽鍺光纖通訊異質接面
外文關鍵詞: HPT, Heterojunction, SiGe, GaAs, optical cummuni
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 22本論文針對光纖通訊系統前級接收端部分做相關之研究與製作,其包括應用於短波長不同材料之光偵測器。在光偵測器方面,使用具有高增益效果之光電晶體(HPT : Heterojunction Phototransistor),本論文中便探討矽鍺光電晶體與砷化鎵光電晶體的結構及特性分析。
    首先利用TMA MEDICI 二維元件模擬軟體比較矽鍺光電晶體與砷化鎵光電晶體在直流與高頻特性以及光直流與高頻脈衝響應上之特性表現,然後利用TSMC 0.35 µm SiGe HBT與GCTC GaAs power HBT提供之製程技術加以實現,並利用本實驗室高頻以及光電量測系統進行量測。
    針對 SiGe HPT吸收效率不佳與操作速度低兩因素,模擬在基極與集極之間加入SiGe MQW來增加SiGe HPT對光的吸收效應以及改善Bandwidth。實驗結果在collector層加入五層MQWs Si0.5Ge0.5 的HPT上,可以得到光電流超過100 µA以上,Bandwidth也有1.25 GHz以上。
    而利用GCTC下線的GaAs HPT,emitter size 為2.8×12µm2而照光面積為1×14 µm2的元件量測得到Dark current為22 nA,Photocurrent為1 mA,Responsivity為5 A/W 與f-3dB為2.15 GHz,證明砷化鎵光電晶體叫矽鍺光電晶體適合用於短波長之光纖通訊使用上。


    Use GCTC fabricate GaAs HPT ,emitter size is 2.8×12µm2 and illumination area is 1×14 µm2 device have Darkcurrent is 22nA,Photocurrent is 1mA,Responsivity is 5 A/W,f-3dB is 2.15 GHz,prove GaAs HPT is better than SiGe HPT using in short wavelength optical communication.

    第一章 導論……………………………………………………….1 第二章 異質接面光電晶體基本工作原理及設計方法………...4 2-1 光電晶體工作原理之介紹………….………………..….6 2-2 光電晶體特性介紹……………………………................8 2-3 光電晶體之設計……………………………….……….11 2-4 光電晶體之量測………………………….…………….16 2-5 結論……………………………………………………..21 第三章 矽鍺光電晶體之研究與設計……….........…….….......22 3-1 矽鍺光電晶體之模擬………………………………......23 3-2 矽鍺光晶體之設計…………..…...………………….…28 3-3 矽鍺光電晶體直流與高頻之量測及分析……………..31 3-4 矽鍺光電晶體光之直流與交流之量測分析………..…41 3-5 具MQW的矽鍺光電晶體之量測及分析……………..…45 3-6 結論.……………….. ………………………………..…51 第四章 砷化鎵光電晶體之研究與設計………………….……52 4-1 砷化鎵光電晶體之模擬………………………...…...…53 4-2 砷化鎵光電晶體之設計………...…………………...…61 4-3 砷化鎵光電晶體直流與高頻之量測及分析…………..63 4-4 砷化鎵光電晶體光之直流與交流之量測及分析……..75 4-5 結論…………….……….….…...….…………………...82 第五章 矽鍺光電晶體與砷化鎵光電晶體之比較83 5-1 矽鍺光電晶體與砷化鎵光電晶體之比較…………....84 5-2 矽鍺光電晶體與砷化鎵光電晶體響應度之比較……85 5-3 矽鍺光電晶體與砷化鎵光電晶體光電流與暗電流之 比較…………………………………………….……..87 5-4 矽鍺光電晶體與砷化鎵光電晶體操作速度之比較…89 5-5 結論……………………………………………………93 第六章 結論……………...……………………...…...………...94 參考文獻……………………………………………....................95

    [1] 黃凡修, “10Gb/s光纖通訊系統傳送/接收電路模擬與實作” 碩士論文, 國立中央大學, 2002.
    [2] 林書民, “應用於波長1.55µm光纖通訊前級接收放大器之設計與製作” 碩士論文, 國立中央大學, 2003.
    [3] 梁虔碩, “AlGaAs/GaAs PIN/HBT 光檢測器轉阻放大器之積體化光接收器” 碩士論文, 國立台灣大學, 2001.
    [4] 許志豪, “異質接面光電晶體及液相磊晶成長磷化銦鎵之研究” 碩士論文, 國立台灣大學, 1993
    [5] 楊振芳, “InAlAs/InGaAs 含p-i-n二極體與異質接面電晶體之光接收器積體電路之製做” 碩士論文, 國立台灣大學,1993
    [6] M. Y. Frankel, Thomas, “Analysis of Ultrafast Photocarrier Transport in AlInAs-GaInAs Heterojunction Bipolar Transistor” IEEE J. Quantum electronics., vol. 31,No.2. Feb,Jul.1995.
    [7] H. Kamitsuna, “Ultra-Wideband Monolithic Photoreceivers Using HBT-Compatible HPT’s with Novel Base Circuits, and Simultaneously Integrated with an HBT Amplifier,” Journal of Light Technology, vol .13 No. 12 December 1995
    [8] R. Sridhara,“Performance Enhancement of GaInP/GaAs Heterojunction Bipolar Phototransistors Using DC Base Bias” Journal of Lightwave Technology, vol, 16 No.6 ,June 1998
    [9] Z. Yang, F. Guarin, E. Hostetter, and g. Freeman, “Avalanche current induced hot carrier degradation in 200 GHz SiGe heterojunction bipolar transistors”, IEEE International Reliability Physics Symposium, pp. 339-343, 2003
    [10] Z. Pei, , L. S. Lai, H. P. Hwang, Y. T. Tseng, C. S. Liang and M. -J. Tsai, “Si1-xGex/Si multi-quantum well phototransistor for near-infrared operation”, Physical E, Vol. 16, Issues 3-4 , pp. 554-557, 2003
    [11] P. Zingway, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C.Lu, M.-J. Tsai, and C.W. Liu, “A High-Performance SiGe-Si Multiple-Quantum-Well Heterojunction Phototransistor,” IEEE Electron Device Lett., Vol. 24, pp. 643-645, 2003
    [12] Min Yang, J. Schaub, D. Rogers, M. Ritter, K. Rim, J.Welse, Byeongju Park, ”High speed silicon lateral trench detector on SOI substrate,” IEDM Tech. Dig., pp.547-550, 2001
    [13] Z. pei, J.-W. Shi,Y.-M. Hsu, F. Yuan, “Bandwidth Enhancement in an Integratable SiGe Phototransitor by Removal of Excess Carriers,” IEDM, Tech. Dig, 2002
    [14] S. M. Frimel and K. P. Roenker, “High performance InP-based Phototransistors for long wavelength, HBT-based optical Receivers,”. IEEE, pp.161-164, 1998.
    [15] J. Ohsawa, S. Yamaguchi, “GaAs Homojunction Phototransistor with Minority Carrier Transport Assisted by Photo-generated carrier profile in the base” Toyota Technological Institute 2-12 Hisakata, Tempaku , Nagoya 468 Japan, IEEE. 1998 .
    [16] S. Chandrasekhar, “Demonstration of Enhanced performance of an InP/InGaAs Heterojuntion Phototransistor with a Base Terminal,” IEEE electron device letters, vol. 12, No. 10 OCT 1991.
    [17] S.M. Frimel and K.P. Roenkera, “Gummel–Poon model for Npn heterojunction bipolar phototransistors ” J. Appl. Phys., Vol. 82, No. 7, 1 October 1997
    [18] S. Bansropun , R. C. Woods, and J. S. Roberts, “Evidence of Optocal Gain Improvement in AlGaAs/GaAs Heterojunction Phototransistors Using an Emitter Shoulder Structure” IEEE transactions on electron device, vol, 48, No. 7, July 2001
    [19] S. Chandrasekhar, L. M. Lunardi, Member, IEEE, “High-Speed Monolithic p-i-n/HBT and HPT/HBT Photoreceivers Implemented with simple Phototransistor Structure ” IEEE photonics technolog letters, vol. 5, No. 11 November 1993.
    [20] D. Fritzsche , E. Kuphal, and R. Aulbach “Fast response InP/InGaAsP heterojunction phototransistor,” Electron. Lett., vol. 17, pp. 178-179, 1981
    [21] Z. pei, C.S , Liang ,L.S. Lai, “High Efficient 850nm and 1310nm Multiple Quantum Well SiGe/Si Heterojunction Phototransistors with 1.25Plus GHz Bandwidth” IEDM,Tech.Dig,pp.297-300, 2002..
    [22] J. Chengzhou, L. Huailin “ A numerical analysis for Heterojuntion Phototransistor ” Institute of low Energy Nuclear Physics, Beijing Normal University, 1998

    QR CODE
    :::