跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周杰
Zhou Jie
論文名稱: 考量留磨量之多軸CNC強力刮齒數學模型建立及加工模擬
Mathematical Modelling and Cutting Simulation of Multi-axis CNC Power Gear Skiving with Grinding Allowance
指導教授: 吳育仁
Yu-Ren Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 強力刮齒CNC工具機誤差分析刀具設計加工模擬
外文關鍵詞: Multi-axis CNC machine
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 刮齒加工(gear skiving)是一種結合連續滾齒及刨齒之高效率齒輪軸向加工法,尤其可應用於多軸CNC車削加工中心(turning center)中,並可突破滾齒無法加工內齒輪之限制,然而如何設計刮齒刀並利用既有可動軸數切削出正確之齒面則需具備齒輪理論專業。本文旨在設計一具留磨量之刮齒刀具並利用立式六軸CNC工具機進行圓柱齒輪加工之數學模型,及推導各軸之運動方程式。過程中,先設計具留磨量齒條刀,藉由齒條刀創成錐型刮齒刀幾何數學模型並由前傾角及邊斜角關係求出刃口廓形。依據刮齒刀與工件齒輪之交錯軸嚙合關係得到泛用運動座標系統,再由實際機台之加工軸自由度建立出加工座標系統,比對兩個座標系統之齊次座標轉換矩陣可得到兩者運動參數之關係,進而得知實際機台各軸之運動方程式,再藉由數值程式可計算出理論工件齒面輪廓。此外,本研究利用VERICUT軟體建立加工機台模型,將各軸運動方程式轉為NC碼,進行齒面加工模擬,並將此模擬齒面與理論齒面進行誤差分析,以驗證數學模型及VERICUT模型之正確性,最後,本文更探討刀具設計角度、位置及留磨量對於加工齒面誤差之影響。


    Power gear skiving is a highly-efficient axial gear-machining method which has advantages of the gear hobbing and the gear shaping. It can be applied in a multi-axis CNC turning center and break through the limitation that the hobbing cannot achieve in the internal gear cutting. However, how to manufacture exact gear tooth surfaces requires the professional gearing knowledge and technology. This study aims to apply the gear skiving on manufacturing the cylinder gears on a vertical five-axis CNC machine. Design skiving cutter with grinding allowance and solve cutting edge of skiving cutter is first and then applied in an established motion coordinate system of the CNC machine to generate the theoretical gear tooth surface. The motion equation for each machining axis is derived based on the general relative-motion relationship between the skiving cutter and the gear work-piece. In addition, the numerical examples of cutting simulation are carried out to prove the exactness of the established mathematical model through the normal deviation analysis between the simulated and standard tooth surfaces. Finally using VERICUT software to analyze the influence of rake angle and bevel angle on the normal deviation of the workpiece.

    摘要 I ABSTRACT II 謝誌 III 圖目錄 VI 表目錄 VIII 符號對照表 IX 第1章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究動機與目的 3 1-4 論文架構 3 第2章 強力刮齒刀數學模型建立 5 2-1 齒條刀數學模型建立 5 2-2 利用齒條刀創成刮齒刀之數學模型建立 8 2-3 刮齒刀之刃口幾何設計 11 2-4 本章結論 12 第3章 強力刮齒加工數學模型建立 13 3-1 強力刮齒法創成齒輪之泛用座標系統建立 13 3-2 利用CNC多軸機進行刮齒加工泛用座標系統建立 17 3-3 泛用座標系統與機台座標系統之參數關係 19 3-4 VERICUT強力刮齒加工建模方法 20 3-4-1 工具機加工仿真模擬軟體VERICUT介紹 20 3-4-2 VERICUT模擬控制器選用 21 3-4-3 VERICUT切削模擬 22 3-5 本章結論 23 第4章 加工齒廓誤差分析 24 4-1 齒廓法向誤差分析流程簡介 24 4-2 齒廓法向誤差分析方法 25 第5章 數值範例 27 5-1 強力刮齒加工範例 27 5-2 刮齒刀重磨改變前刃面位置對齒廓誤差之影響 34 5-3 刮齒刀邊斜角對齒廓法向誤差之影響 39 5-4 刮齒刀前傾角對齒廓誤差之影響 43 第6章 總結與未來展望 45 6-1 總結 45 6-2 未來展望 46 參考文獻 47 作者介紹 49

    [1] Kojima, M.,“On the clearance angles of skiving cutter,”Bulletin of JSME, Vol. 17(105), pp. 401-408, 1974.
    [2] Litvin, F.L. and Fuentes, A.F., Gear Geometry and Applied Theory, Cambridge University Press, 2nd ed., New York, 2004.
    [3] Lei, X., Lao, Q.C., and Shang, Z.Y., “Calculation of skiving cutter blade,” AIP Conference Proceedings, Vol. 1967, 030042, 2018.
    [4] Stadtfeld, H.J., “Power skiving of cylindrical gears on different machine platforms,” Gear Technology, 2014.
    [5] Guo E., Hong R., Huang X., and Fang C., “A novel power skiving method using the common shaper cutter,” The International Journal of Advanced Manufacturing Technology, Vol. 83(1), pp. 157-165, 2016.
    [6] Guo, E., Hong, R., Huang, X., and Fang C., “Research on the design of skiving tool for machining involute gears,” Journal of materials science and technology, Vol. 28(12), pp. 5107–5115, 2014.
    [7] Guo, E., Hong, R., Huang, X., and Fang C., “Research on the cutting mechanism of cylindrical gear power skiving,” The International Journal of Advanced Manufacturing Technology, Vol. 79(1), pp. 541–550, 2015.
    [8] Guo, E., Hong, R., Huang, X., and Fang C., “A correction method for power skiving of cylindrical gears lead modification,” Journal of materials science and technology, Vol. 29, 4379–4386, 2015.
    [9] Shih, Y.P. and Li, Y.J., “A novel method for producing a conical skiving tool with error-free flank faces for internal gear manufacture,” Journal Mechanical Design, Vol. 140(4), 043302(9), 2018.
    [10] Antoniadis, A., Vidakis, N., and Bilalis, N., “A simulation model of gear skiving,” Journal of Materials Processing Technology, Vol. 146, pp. 213-220, 2004.

    [11] Antoniadis, A., “Gear skiving—CAD simulation approach,” Computer-Aided Design, Vol. 44(7), pp. 611–616, 2012.
    [12] Sugimoto, T., Ishibashi, A., and Yonekura, M., “Performance of skiving hobs in finishing induction hardened and carburized gears,” Gear Technology, pp. 34–41, 2003.
    [13] Chen, X. C., Li, J., Zou, Y., & Wang, P. “A study on the grinding of the major flank face of error-free spur slice cutter,” The International Journal of Advanced Manufacturing Technology, Vol 72, pp. 425-438, 2014.

    QR CODE
    :::