| 研究生: |
周杰 Zhou Jie |
|---|---|
| 論文名稱: |
考量留磨量之多軸CNC強力刮齒數學模型建立及加工模擬 Mathematical Modelling and Cutting Simulation of Multi-axis CNC Power Gear Skiving with Grinding Allowance |
| 指導教授: |
吳育仁
Yu-Ren Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 強力刮齒 、CNC工具機 、誤差分析 、刀具設計 、加工模擬 |
| 外文關鍵詞: | Multi-axis CNC machine |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
刮齒加工(gear skiving)是一種結合連續滾齒及刨齒之高效率齒輪軸向加工法,尤其可應用於多軸CNC車削加工中心(turning center)中,並可突破滾齒無法加工內齒輪之限制,然而如何設計刮齒刀並利用既有可動軸數切削出正確之齒面則需具備齒輪理論專業。本文旨在設計一具留磨量之刮齒刀具並利用立式六軸CNC工具機進行圓柱齒輪加工之數學模型,及推導各軸之運動方程式。過程中,先設計具留磨量齒條刀,藉由齒條刀創成錐型刮齒刀幾何數學模型並由前傾角及邊斜角關係求出刃口廓形。依據刮齒刀與工件齒輪之交錯軸嚙合關係得到泛用運動座標系統,再由實際機台之加工軸自由度建立出加工座標系統,比對兩個座標系統之齊次座標轉換矩陣可得到兩者運動參數之關係,進而得知實際機台各軸之運動方程式,再藉由數值程式可計算出理論工件齒面輪廓。此外,本研究利用VERICUT軟體建立加工機台模型,將各軸運動方程式轉為NC碼,進行齒面加工模擬,並將此模擬齒面與理論齒面進行誤差分析,以驗證數學模型及VERICUT模型之正確性,最後,本文更探討刀具設計角度、位置及留磨量對於加工齒面誤差之影響。
Power gear skiving is a highly-efficient axial gear-machining method which has advantages of the gear hobbing and the gear shaping. It can be applied in a multi-axis CNC turning center and break through the limitation that the hobbing cannot achieve in the internal gear cutting. However, how to manufacture exact gear tooth surfaces requires the professional gearing knowledge and technology. This study aims to apply the gear skiving on manufacturing the cylinder gears on a vertical five-axis CNC machine. Design skiving cutter with grinding allowance and solve cutting edge of skiving cutter is first and then applied in an established motion coordinate system of the CNC machine to generate the theoretical gear tooth surface. The motion equation for each machining axis is derived based on the general relative-motion relationship between the skiving cutter and the gear work-piece. In addition, the numerical examples of cutting simulation are carried out to prove the exactness of the established mathematical model through the normal deviation analysis between the simulated and standard tooth surfaces. Finally using VERICUT software to analyze the influence of rake angle and bevel angle on the normal deviation of the workpiece.
[1] Kojima, M.,“On the clearance angles of skiving cutter,”Bulletin of JSME, Vol. 17(105), pp. 401-408, 1974.
[2] Litvin, F.L. and Fuentes, A.F., Gear Geometry and Applied Theory, Cambridge University Press, 2nd ed., New York, 2004.
[3] Lei, X., Lao, Q.C., and Shang, Z.Y., “Calculation of skiving cutter blade,” AIP Conference Proceedings, Vol. 1967, 030042, 2018.
[4] Stadtfeld, H.J., “Power skiving of cylindrical gears on different machine platforms,” Gear Technology, 2014.
[5] Guo E., Hong R., Huang X., and Fang C., “A novel power skiving method using the common shaper cutter,” The International Journal of Advanced Manufacturing Technology, Vol. 83(1), pp. 157-165, 2016.
[6] Guo, E., Hong, R., Huang, X., and Fang C., “Research on the design of skiving tool for machining involute gears,” Journal of materials science and technology, Vol. 28(12), pp. 5107–5115, 2014.
[7] Guo, E., Hong, R., Huang, X., and Fang C., “Research on the cutting mechanism of cylindrical gear power skiving,” The International Journal of Advanced Manufacturing Technology, Vol. 79(1), pp. 541–550, 2015.
[8] Guo, E., Hong, R., Huang, X., and Fang C., “A correction method for power skiving of cylindrical gears lead modification,” Journal of materials science and technology, Vol. 29, 4379–4386, 2015.
[9] Shih, Y.P. and Li, Y.J., “A novel method for producing a conical skiving tool with error-free flank faces for internal gear manufacture,” Journal Mechanical Design, Vol. 140(4), 043302(9), 2018.
[10] Antoniadis, A., Vidakis, N., and Bilalis, N., “A simulation model of gear skiving,” Journal of Materials Processing Technology, Vol. 146, pp. 213-220, 2004.
[11] Antoniadis, A., “Gear skiving—CAD simulation approach,” Computer-Aided Design, Vol. 44(7), pp. 611–616, 2012.
[12] Sugimoto, T., Ishibashi, A., and Yonekura, M., “Performance of skiving hobs in finishing induction hardened and carburized gears,” Gear Technology, pp. 34–41, 2003.
[13] Chen, X. C., Li, J., Zou, Y., & Wang, P. “A study on the grinding of the major flank face of error-free spur slice cutter,” The International Journal of Advanced Manufacturing Technology, Vol 72, pp. 425-438, 2014.