| 研究生: |
黃尚昇 Shang-Sheng Huang |
|---|---|
| 論文名稱: |
非週期性晶疇極化反轉鈮酸鋰作為雙波長電光布拉格雷射Q調制器之研究 Aperiodically Poled Lithium Niobate as Electro-Optical Bragg Q-switch in Dual Wavelength Laser |
| 指導教授: |
陳彥宏
Yen-Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 非週期性晶疇極化反轉鈮酸鋰 |
| 外文關鍵詞: | APPLN |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
橘黃光脈衝雷射,可應用天文觀測和醫療領域。在實驗上利用非週期性晶疇極化反轉鈮酸鋰同時Q調制1064nm雷射和1342nm雷射並利用BiBO晶體和頻產生橘黃光脈衝雷射。以模擬退火法演算法,計算可滿足1064nm和1342nm雷射繞射條件的非週期性結構。入射光的光束大小、非週期性結構的面積…等,皆會影響繞射效率。然而,非週期性晶疇極化反轉鈮酸鋰在結構中的模態耦合方程式複雜,尚未有理論發表,因此先以實驗作為佐證
在考量入射光束大小為300μm的情況下,本實驗元件設計長度均為3cm,但寬度不同,分別為920μm和560μm。寬度960μm的設計,結構涵蓋入射光與繞射光;而寬度560μm的設計只考量入射光。兩種結構經反傅立葉分析過後,其空間頻率所對應到的傅立葉係數,幾乎相等。我們在寬度960μm的元件,入射光入射元件中間位置時,量測到最佳的繞射效率。將此元件,做為在Nd:YVO4雷射系統下,雙波長雷射Q調制並利用BIBO和頻產生橘黃光脈衝雷射。在共振腔優化最佳程度下,吸收泵浦為5.8W,達成橘黃光脈衝雷射輸出。脈衝寬度9ns,尖端峰值功率270W。
Yellow-orange pulsed lasers are required for astronomic observation and medical applications. We have succeed design and manufacture aperiodically poled lithium niobate(APPLN) as EO Bragg Q switching in Nd:YVO4 dual wavelength sum frequency generate Orange-Yellow pulse laser.
In this letter, we design APPLN by aperiodic optical superlattice technique and simulated annealing method. Beam spot size of incident light, aperiodically structure area and other reason effect diffraction efficiency. However, the coupled mode theory in APPLN is complicated, so the theory haven’t been publish.
The beam spot size of the incident light is about 300μm, we design two device. The first device which width is 920μm design for incident light and diffraction light, and the second device which width is 560μm design for incident light only. Both length is 3cm and thickness is 500μm.
We can measure different diffraction efficiency with different incident light position. When the incident light input the device’s middle position of the width dimension, we get the highest diffraction efficiency at the first device. Then we put the first device into laser cavity. Under the optimum cavity-length condition, the highest Orange-Yellow pulse laser peak power is 270W, pulse width is 9ns, obtained at 5.8W of absorption pump power.
[1.1] T.H.Maiman,Stimulated Optical Radiation Ruby.",
Nature,187,1960
[1.2] S. E. Miller, “Integrated Optics : an Introduction.”,Bell System
Technical Journal, 48, 1969
[1.3] P.A.Franken,A.E.Hill,C.W.Peter,G.Weinreich, "Generation of Optical Harmonics.",Physical Review Letters,Vol.7, Number 4,1961
[1.4] M.Bass,P.A.Franken,A.E.Hill,C.W.Peter,G.Weinreich, "Optical Mixing.",Physical Review Letters,Vol.8,Number18,1962
[1.5] March 15, 2002 / Vol. 27, No. 6 / OPTICS LETTERS
[1.6] Appl. Phys. B 88, 47–50 (2007)
[1.7] W. H. Zachariasen, Skr. Norske Vid-Ada., Oslo, Mat. Naturv.,No.4, 1928
[1.8] B. T. Matthias and J. P. Remeika, “Ferroelectricity in the Ilmenite Structure.”, Physical Review Letters, 76, 1949
[1.9] A. A. Ballman, “Growth of Piezoelectric and Ferroelectric Materials by the Czochralski Technique.”, Journal of the American Ceramic Society,48, 1965
[1.10] 孔勇發,許京軍,張光寅,劉思敏,陸猗,「多功能光電材料 –鈮酸鋰晶體」,科學出版社,2005
[1.11] P. Lerner, C. Legras and J. P. Duman, “Stoechiométrie des Monocristaux de Métaniobate de Lithium.”, Journal of Crystal Growth,3-4, 1968
[1.12] K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura and T. Hayashi,“Stoichiometric LiNbO3 Single Crystal Growth by Double Crucible Czochralski Method Using Automatic Powder Supply System.”,Journal of Crystal Growth, 116, 1992
[1.13] Dieter H. Jundt,"Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate",Opt. Lett. Vol. 22, No. 20, 1553-1555(1997)
[1.14] March 1, 2007 / Vol. 32, No. 5 / OPTICS LETTERS
[1.15] R. H. Kingston, “Parametric Amplification and Oscillation at Optical Frequencies.”, Proceedings of the Institute of Radio Engineers, 50, 1962
[1.16] CASTECH INC,BiBO crystal
[1.17] Huaijin Zhang,Xianlin Meng,Li Zhu,Changqing Wang,Y.T.Chow,Mengkai Lu,"Growth,spectra and influence of annealing effect on laser propertied of Nd:YVO4 crystal",Optical Materials 14,25-30,2000
[1.18] Eksma optics, coating specifications, 2005
[1.19] Foy R., Labeyrie A. : 1985, “Feasibility of adaptive telescope with laser probe” Astronomy and Astrophysics (ISSN 0004-6361), vol. 152, no. 2, p. L29 L29
[1.20] Jirí Janousek, Sandra Johansson2, Peter Tidemand-Lichtenberg,
Shunhua Wang, Jesper L. Mortensen, Preben Buchhave and Fredrik Laurell, “Efficient all solid-state continuous-wave yellow-orange light source,” Optics Express, 13, p1188-1192(2005)
[1.21] 陳彥良,“高效率雙Nd:YVO4 雷射和頻黃光產生系統CW,
intracavity orange light generation in an all-solid-state laser system using two Nd:YVO4 laser crystals”,國立中央大學光電科學與工程研究所碩士論文,中華民國九十八年六月
[1.22] k.w. Su,y.t. Chang, y.f. Chen “Power scale-up of the
diode-pumped actively Q-switched Nd:YVO4 Raman laser with
an undoped YVO4 crystal as a Raman shifter”, Appl. Phys. B
88, 47–50 (2007)
[1.23] C. Yung-Fu abd S. W. Tsai, “Diode-pumped Q-switched
Nd:YVO4 yellow laser with intracavity sum frequency mixing,” Opt. Lett. 27,397-399 (2002)
[1.24] Y. F. Chen and S. W. Tsai, “Diode-pumped Q-switched laser
with intracavity sum frequency mixing in periodically poled
KTP,” Appl. Phys.B. 79, 207-210 (2004
[1.25] August 15, 2010 / Vol. 35, No. 16 / OPTICS LETTERS
[1.26] 曾冠翔," 以電光非週期性晶格極化反轉鈮酸鋰晶體應用於雙波長雷射系統之腔內布拉格繞射元件之設計與研究Aperiodic Poled Lithium Niobate Electro-optic Bragg Deflector as an Efficiency Laser Q-switch in a Dual-wavelength Solid-State Laser ",國立中央大學光電科學與工程研究所碩士論文,中華民國100年六月
[2.1] A. Yariv and P. Yeh, “Optical waves in Crystals.”, Wiley,
New York, 1983
[2.2] B. E. A. Saleh, M. C. Teich, “Fundamentals of Photonics.”,
John Wiley & Sons, Inc., 1991
[2.3] Y.Y.Lin,S.T.Lin,G.W.Chang,A.C.Chiang,Y.C.Huang,Y.H.Chen, " Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch." OPTICS LETTERS,Vol.32,No.5,2007
[2.4] Svelto&Hanna “Principles of Lasers.”
[2.5] Yen-Chieh Huang,” Principles of Nonlinear Optics”
[3.1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, And E. Teller, “Equation of State Calculation by Fast Computing Machines.”,Journal of Chemical Physics, 21(6), 1953
[3.2] Ben-Yuan Gu, Yan Zhang, Bi-Zhen Dong, “Investigations of
Harmonic Generations in Aperiodic Optical Superlattices.”,
Journal of Applied Physics, Vol. 87, No. 11, 2000
[3.3] 呂學璁,"以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器Active Telecom-Band Wavelength tuning
Electro-Optic Aperiodically Poled Lithium Niobate Optical
Parametric Generator
[3.4] Shintaro Miyazawa, “Ferroelectric Domain Inversion in Ti-diffused LiNbO3 Optical Waveguide.”, Journal of Applied Physics, 50, 1979
[3.5] Alan C. G. Nutt, Venkatraman Gopalan, and Mool C.Gupta,
“Domain Inversion in Linbo3 Using Direct Electron-beamwriting.”, Applied Physics Letters, 60, 1992
[3.6] 閔乃本,「非線性光學」,中國科學技術出版社,1999
[3.7] Duan Feng, Nai-Ben Ming, Jing-Fen Hong, Yong-Shun Yang,
Jin-Song Zhu, Zhen Yang, and Ye-Ning Wang, “Enhancement of
Second-Harmonic Generation in Linbo3 Crystals with Periodic Laminar Ferroelectric Domains.”, Applied Physics Letters, 37, 607, 1980
[3.8] Shintaro Miyazawa, “Ferroelectric Domain Inversion in Ti-diffused LiNbO3 Optical Waveguide.”, Journal of Applied Physics, 50, 1979
[3.9] A. Agronin, Y. Rosenwaks, and G. Rosenman, “Ferroelectric Domain Reversal in LiNbO3 Crystals Using High-voltage Atomic Force Microscopy”, Applied Physics Letters, 85, 2004
[3.10] L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer,W. R. Bosenberg, “Quasi-phase-matched 1.064-mm-pumped Optical Parametric Oscillator in Bulk Periodically Poled LiNbO3.”,Optics Letters, Vol. 20, No.1, 1995
[3.11] L. Myer, R. Eckardt, M. Fejer, R. Byer, W. Bodenbeg, and
J. Pierce,“Quasi-phase Matched Optical Parametric Oscillators
in Bulk Periodically Poled LiNbO3.”,Journal of the Optical Society of America B, Vol. 12, No. 11, 1995
[3.12] Gregory David Miller July, “Periodically Poled Lithium Niobate :Modeling, Fabrication, and Nonlinear-Optical Performance.”,Department of Electric Engineering, Stanford University, 1998