跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖啓舜
Chi-Shun Liao
論文名稱: 日冕洞演化與高速太陽風之關係
Evolution of Coronal Hole and the Relationship with High-Speed Solar Wind
指導教授: 楊雅惠
Ya-Hui Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學與工程學系
Department of Space Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 115
中文關鍵詞: 日冕洞演化高速太陽風太陽週期長生命週期
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文使用SDO/AIA 193 Å太陽影像、SDO/HMI磁場圖,以及OMNI資料庫在1 AU處的太陽風資料,分析2010年6月至2021年1月之間的181個中低緯度日冕洞的特徵,包含日冕洞對近地太陽風的影響程度 (計算結果類似日冕洞面積,但概念不同,以下簡稱ICH-HSS)、位置、磁場強度、磁通量等,並探討其與太陽風速率的相關性。
    我們的研究內容主要分為日冕洞事件的特性分析與長生命週期的演化,特性分析的結果顯示,在分析時間內的日冕洞事件中,ICH-HSS與太陽風速率呈正相關 (相關係數r = 0.53-0.57);日冕洞磁通量與太陽風速率呈相關 (r = 0.41-0.45);ICH-HSS與磁場強度雖然呈正相關但並不顯著 (r = 0.25-0.45);日冕洞磁場強度與太陽風速率則不相關 (r < 0.25)。另外,在長達10年的分析期間內,日冕洞磁場強度與磁通量的變化趨勢與太陽黑子數一致;ICH-HSS有著相同的變化趨勢,但時間上較太陽黑子數延遲1-2年;太陽風速率則沒有與太陽黑子數相同的變化趨勢,但從中我們可以觀察到長生命週期的日冕洞。針對長生命週期的日冕洞,我們共發現7個被重複觀測達5次以上的日冕洞,其ICH-HSS與Heinemann et al. (2018a) 中日冕洞面積的演化過程有相似的發現,其中6個事件有著成長期、極大期,及衰退期,且每個日冕洞的演化過程不一。除了ICH-HSS有明顯的演化過程,我們也發現磁場強度、磁通量、以及太陽風速率也隨著演化過程而呈現與ICH-HSS相似的趨勢。
    在本論文的研究中,在181個事件中有59個事件找不到相對應的太陽風速率。這可能是日冕物質拋射 (Coronal Mass Ejection,CME)、行星際空間的環境等原因,導致這個結果,我們會另外針對這些事件討論。


    This thesis analyzes the characteristics of 181 low to mid-latitude coronal holes between June 2010 and January 2021 using SDO/AIA 193 Å solar image, SDO/HMI magnetogram, and OMNI database (solar wind data at 1 AU). The analyzed features include the impact of coronal hole on high-speed streams (ICH-HSS), which represents the influence of coronal hole on the near-Earth solar wind. It is calculated based on the coronal hole area and the weighting in the spatial distribution function. Additionally, the study examines the position, magnetic field strength, magnetic flux, and their correlations with solar wind speed.
    The research is divided into two main parts: the analysis of coronal hole events' characteristics and the investigation of long-lived events' evolution. The analysis of event characteristics reveals a positive correlation between ICH-HSS and solar wind speed (correlation coefficient r = 0.53-0.57). Furthermore, the coronal hole magnetic flux shows a correlation with solar wind speed (r = 0.41-0.45), while the correlation between ICH-HSS and magnetic field strength is positive but not significant (r = 0.25-0.45). The magnetic field strength of coronal holes is found to be unrelated to solar wind speed (r < 0.25). Over the 10-year analysis period, the variation trend of magnetic field strength and magnetic flux in coronal holes is consistent with those of sunspot numbers. ICH-HSS exhibits a similar trend but with a delay of 1-2 years compared to sunspot numbers. On the other hand, solar wind speed does not display the same variation trend as sunspot numbers. However, the study reveals the presence of long-lived coronal holes. Seven coronal holes that were observed at least 5 times during the study period dentified. The evolution of ICH-HSS in these long-lived events corresponds to the findings reported by Heinemann et al. (2018a) regarding the evolution of coronal hole area. Each coronal hole exhibits a growing phase, a maximum phase, and a decaying phase, but the evolution process varies case by case. In addition to the evident evolution of ICH-HSS, the magnetic field strength, magnetic flux, and solar wind speed also demonstrate similar trends throughout the evolution process.
    In this study, 59 events were found lacking corresponding solar wind speed data among 181 analyzed events. This discrepancy may be attributed to factors such as coronal mass ejections (CMEs) and the interplanetary space environment. Further discussions will be conducted to address these specific events.

    中文摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 日冕洞 1 1.2 太陽磁場與太陽風 2 1.3 文獻回顧 4 1.4 研究動機 6 第二章 觀測與分析方法 8 2.1 觀測儀器 8 2.1.1 SDO 8 2.1.2 OMNI資料庫 11 2.2 事件選取 14 2.3 資料校正 15 2.4 分析方法 17 第三章 分析結果 30 3.1 事件概述 30 3.2 日冕洞事件特性 32 3.2.1 ICH-HSS分布 32 3.2.2 日冕洞磁場強度與磁通量分布 33 3.2.3 太陽風速率分布 34 3.2.4 平移時間分布 35 3.2.5 ICH-HSSvs.太陽風速率 36 3.2.6 ICH-HSSvs.磁場強度與磁通量 38 3.2.7 太陽風速率vs.日冕洞磁場強度與磁通量 40 3.3 日冕洞特性vs.時間 (2010年至2021年) 57 3.3.1 ICH-HSS vs.時間 58 3.3.2 日冕洞磁場強度與磁通量vs.時間 58 3.3.3 太陽風速率vs.時間 60 3.3.4 事件數量 61 3.3.5 日冕洞位置與極性vs.時間 62 3.4 長生命週期的日冕洞 70 3.4.1 長周期與短周期日冕洞 70 3.4.2 長周期事件的日冕洞ICH-HSS 72 3.4.3 長周期事件的日冕洞磁場強度 72 3.4.4 長周期事件的日冕洞磁通量 73 3.4.5 長周期事件的太陽風速率 74 第四章 結果與討論 84 4.1 日冕洞在空間上的分布與太陽風速率 84 4.2 沒有相對應太陽風的日冕洞事件 87 第五章 總結 90 參考資料 93

    Abramenko, V., Yurchyshyn, V., Linker, J., Mikić, Z., Luhmann, J., & Lee, C. O. (2010). LOW-LATITUDE CORONAL HOLES AT THE MINIMUM OF THE 23rd SOLAR CYCLE. The Astrophysical Journal, 712(2), 813-818. https://doi.org/10.1088/0004-637x/712/2/813
    Bu, X., Luo, B., Shen, C., Liu, S., Gong, J., Cao, Y., & Wang, H. (2019). Forecasting High‐Speed Solar Wind Streams Based on Solar Extreme Ultraviolet Images. Space Weather. https://doi.org/10.1029/2019sw002186
    Cranmer, S. R. (2009). Coronal Holes. Living Reviews in Solar Physics, 6(1), 3. https://doi.org/10.12942/lrsp-2009-3
    Delaboudinière, J., Artzner, G. E., Brunaud, J., Gabriel, A., Hochedez, J.-F., Millier, F., Song, X. Y., Au, B., Dere, K. P., Howard, R., Kreplin, R., Michels, D. J., Moses, J. D., Defise, J. M., Jamar, C., Rochus, P., Chauvineau, J. P., Marioge, J. P., Catura, R. C., & Dessel, E. L. (1995). EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Physics, 162, 291-312. https://doi.org/10.1007/BF00733432
    Garton, T. M., Murray, S. A., & Gallagher, P. T. (2018). Expansion of High-speed Solar Wind Streams from Coronal Holes through the Inner Heliosphere. The Astrophysical Journal, 869(1). https://doi.org/10.3847/2041-8213/aaf39a
    Heinemann, S. G., Hofmeister, S. J., Veronig, A. M., & Temmer, M. (2018a). Three-phase Evolution of a Coronal Hole. II. The Magnetic Field. The Astrophysical Journal, 863(1). https://doi.org/10.3847/1538-4357/aad095
    Heinemann, S. G., Jerčić, V., Temmer, M., Hofmeister, S. J., Dumbović, M., Vennerstrom, S., Verbanac, G., & Veronig, A. M. (2020). A statistical study of the long-term evolution of coronal hole properties as observed by SDO. Astronomy & Astrophysics, 638. https://doi.org/10.1051/0004-6361/202037613
    Heinemann, S. G., Temmer, M., Heinemann, N., Dissauer, K., Samara, E., Jerčić, V., Hofmeister, S. J., & Veronig, A. M. (2019). Statistical Analysis and Catalog of Non-polar Coronal Holes Covering the SDO-Era Using CATCH. Solar Physics, 294(10). https://doi.org/10.1007/s11207-019-1539-y
    Heinemann, S. G., Temmer, M., Hofmeister, S. J., Veronig, A. M., & Vennerstrøm, S. (2018b). Three-phase Evolution of a Coronal Hole. I. 360° Remote Sensing and In Situ Observations. The Astrophysical Journal, 861(2). https://doi.org/10.3847/1538-4357/aac897
    Hewins, I. M., Gibson, S. E., Webb, D. F., McFadden, R. H., Kuchar, T. A., Emery, B. A., & McIntosh, S. W. (2020). The Evolution of Coronal Holes over Three Solar Cycles Using the McIntosh Archive. Solar Physics, 295(11). https://doi.org/10.1007/s11207-020-01731-y
    Hofmeister, S. J., Utz, D., Heinemann, S. G., Veronig, A., & Temmer, M. (2019). Photospheric magnetic structure of coronal holes. Astronomy & Astrophysics, 629. https://doi.org/10.1051/0004-6361/201935918
    Hofmeister, S. J., Veronig, A., Reiss, M. A., Temmer, M., Vennerstrom, S., Vršnak, B., & Heber, B. (2017). Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24. The Astrophysical Journal, 835(2), 268. https://doi.org/10.3847/1538-4357/835/2/268
    Hofmeister, S. J., Veronig, A. M., Poedts, S., Samara, E., & Magdalenic, J. (2020). On the Dependency between the Peak Velocity of High-speed Solar Wind Streams near Earth and the Area of Their Solar Source Coronal Holes. The Astrophysical Journal, 897(1). https://doi.org/10.3847/2041-8213/ab9d19
    Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker, D. G., Plunkett, S. P., Korendyke, C. M., Cook, J. W., Hurley, A., Davila, J. M., Thompson, W. T., St Cyr, O. C., Mentzell, E., Mehalick, K., Lemen, J. R., Wuelser, J. P., Duncan, D. W., Tarbell, T. D., Wolfson, C. J., . . . Carter, T. (2008). Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). In C. T. Russell (Ed.), The STEREO Mission (pp. 67-115). Springer New York. https://doi.org/10.1007/978-0-387-09649-0_5
    Huang, T. (2018). 機器學習: 集群分析 K-means Clustering. https://chih-sheng-huang821.medium.com/機器學習-集群分析-k-means-clustering-e608a7fe1b43
    Karachik, N. V., & Pevtsov, A. A. (2011). Solar Wind and Coronal Bright Points inside Coronal Holes. The Astrophysical Journal, 735(1). https://doi.org/10.1088/0004-637x/735/1/47
    Karna, M. L., Karna, N., Saar, S. H., Pesnell, W. D., & DeLuca, E. E. (2020). A Study of Equatorial Coronal Holes during the Maximum Phase of Four Solar Cycles. The Astrophysical Journal, 901(2), 124. https://doi.org/10.3847/1538-4357/abafae
    Lemen, J. R., Title, A. M., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., Duncan, D. W., Edwards, C. G., Friedlaender, F. M., Heyman, G. F., Hurlburt, N. E., Katz, N. L., Kushner, G. D., Levay, M., Lindgren, R. W., Mathur, D. P., McFeaters, E. L., Mitchell, S., Rehse, R. A., . . . Waltham, N. (2012). The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics, 275(1), 17-40. https://doi.org/10.1007/s11207-011-9776-8
    Linker, J. A., Heinemann, S. G., Temmer, M., Owens, M. J., Caplan, R. M., Arge, C. N., Asvestari, E., Delouille, V., Downs, C., Hofmeister, S. J., Jebaraj, I. C., Madjarska, M. S., Pinto, R. F., Pomoell, J., Samara, E., Scolini, C., & Vršnak, B. (2021). Coronal Hole Detection and Open Magnetic Flux. The Astrophysical Journal, 918(1), 21. https://doi.org/10.3847/1538-4357/ac090a
    Lowder, C., Qiu, J., & Leamon, R. (2016). Coronal Holes and Open Magnetic Flux over Cycles 23 and 24. Solar Physics, 292(1), 18. https://doi.org/10.1007/s11207-016-1041-8
    Lowder, C., Qiu, J., Leamon, R., & Liu, Y. (2014). Measurements of Euv Coronal Holes and Open Magnetic Flux. The Astrophysical Journal, 783(2). https://doi.org/10.1088/0004-637x/783/2/142
    Nakagawa, Y., Nozawa, S., & Shinbori, A. (2019). Relationship between the low-latitude coronal hole area, solar wind velocity, and geomagnetic activity during solar cycles 23 and 24. Earth, Planets and Space, 71(1). https://doi.org/10.1186/s40623-019-1005-y
    Nolte, J. T., Krieger, A. S., Timothy, A. F., Gold, R. E., Roelof, E. C., Vaiana, G., Lazarus, A. J., Sullivan, J. D., & McIntosh, P. S. (1976). Coronal holes as sources of solar wind. Solar Physics, 46(2), 303-322. https://doi.org/10.1007/bf00149859
    Obridko, V. N., & Shelting, B. D. (2011). Relationship between the Parameters of Coronal Holes and High-Speed Solar Wind Streams over an Activity Cycle. Solar Physics, 270(1), 297-310. https://doi.org/10.1007/s11207-011-9753-2
    Obridko, V. N., Shelting, B. D., Livshits, I. M., & Asgarov, A. B. (2009). Contrast of Coronal Holes and Parameters of Associated Solar Wind Streams. Solar Physics, 260(1), 191-206. https://doi.org/10.1007/s11207-009-9435-5
    Reiss, M. A., Temmer, M., Veronig, A. M., Nikolic, L., Vennerstrom, S., Schöngassner, F., & Hofmeister, S. J. (2016). Verification of high-speed solar wind stream forecasts using operational solar wind models. Space Weather, 14(7), 495-510. https://doi.org/10.1002/2016sw001390
    Rotter, T., Veronig, A. M., Temmer, M., & Vršnak, B. (2012). Relation Between Coronal Hole Areas on the Sun and the Solar Wind Parameters at 1 AU. Solar Physics, 281(2), 793-813. https://doi.org/10.1007/s11207-012-0101-y
    Rotter, T., Veronig, A. M., Temmer, M., & Vršnak, B. (2015). Real-Time Solar Wind Prediction Based on SDO/AIA Coronal Hole Data. Solar Physics, 290(5), 1355-1370. https://doi.org/10.1007/s11207-015-0680-5
    Saqri, J., Veronig, A., Heinemann, S., Hofmeister, S., Temmer, M., Dissauer, K., & Su, Y. (2020). Differential Emission Measure Plasma Diagnostics of a Long-Lived Coronal Hole. Solar Physics, 295. https://doi.org/10.1007/s11207-019-1570-z
    Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., Bogart, R. S., Hoeksema, J. T., Liu, Y., Duvall, T. L., Zhao, J., Title, A. M., Schrijver, C. J., Tarbell, T. D., & Tomczyk, S. (2012). The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Physics, 275(1), 207-227. https://doi.org/10.1007/s11207-011-9834-2
    Temmer, M., Vršnak, B., & Veronig, A. M. (2007). Periodic Appearance of Coronal Holes and the Related Variation of Solar Wind Parameters. Solar Physics, 241(2), 371-383. https://doi.org/10.1007/s11207-007-0336-1
    Tom Bridgman, J. N., Ian Jones, Laurence Schuler. (2020). Coronal Holes at Solar Minimum and Solar Maximum. https://svs.gsfc.nasa.gov/4854#section_credits
    Verbanac, G., Vršnak, B., Veronig, A., & Temmer, M. (2010). Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astronomy & Astrophysics, 526. https://doi.org/10.1051/0004-6361/201014617
    Vršnak, B., Temmer, M., & Veronig, A. M. (2007a). Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters. Solar Physics, 240(2), 315-330. https://doi.org/10.1007/s11207-007-0285-8
    Vršnak, B., Temmer, M., & Veronig, A. M. (2007b). Coronal Holes and Solar Wind High-Speed Streams: II. Forecasting the Geomagnetic Effects. Solar Physics, 240(2), 331-346. https://doi.org/10.1007/s11207-007-0311-x
    Zhang, J. (2003). Interplanetary and solar surface properties of coronal holes observed during solar maximum. Journal of Geophysical Research, 108(A4). https://doi.org/10.1029/2002ja009538

    QR CODE
    :::