| 研究生: |
林子寬 Tzu-Kuan Lin |
|---|---|
| 論文名稱: |
雙角隅反射鏡干涉儀應用於三自由度位移量測 Double Corner Cube Interferometer for Three Degree-of-Freedom Displacement Measurement |
| 指導教授: |
李朱育
Ju-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 干涉儀 、角隅反射鏡 、二維傅立葉轉換影像分析 、位移量測 |
| 外文關鍵詞: | Interferometer, Corner cube retroreflector, 2D Fourier transform analysis, Displacement measurement |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了一種創新的「雙角隅反射鏡干涉儀」,這套干涉儀基於光的干涉原理,能夠同時達到XYZ三軸方向上的位移量測。
此系統以平行擴束光為光源,並透過兩顆角隅反射鏡作為反射鏡,一顆固定在系統中而一顆架設在待測物體上,並基於雙點光源干涉之原理,即可透過兩反射光之干涉現象計算出兩角隅反射鏡之相對位置,進而推算出待測物於三軸方向上的位移。本系統亦使用二維傅立葉轉換(2D Fourier transform),將兩反射鏡所產生的干涉圖形影像,由空間域轉換至空間頻域,即可提取干涉條紋之條紋走向以及週期,以利更進一步的計算。本研究實驗中,將其一反射鏡架設於數個電控位移平台上作為待測物,並控制電控平台在各軸上進行不同行程和不同方式的運動,以驗證此系統的可行性與性能。
本系統相較於傳統用於位移量測的雙光路干涉儀架構或光柵干涉儀節省了許多架設空間,且降低了實驗的設備成本。根據理論推導和實驗結果證明,本量測系統在X-Y平面上量測解析度為58 μm,靈敏度為17 pixels/mm,量測極限範圍為5 x 5 cm2而量測速度為20 fps;在Z軸量測解析度為6.25 nm,靈敏度為0.56˚/nm,量測極限距離為20 cm而量測速度為3.1 μm /s。
This paper proposes an innovative "double corner cube interferometer". This interferometer is based on the principle of light interference and can simultaneously measure displacements in the XYZ directions.
This system uses expanded parallel laser beam as the light source with two corner cubes as reflectors, one is fixed in the system and the other is set on the object to be measured, and based on the principle of double-point light source interference, the relative position of the two reflectors can be obtained. The system also uses 2D Fourier transform to convert the interference pattern images generated by the two reflectors from spatial domain to spatial-frequency domain, so that the fringe direction and period of the interference fringes can be extracted for further analysis. In the experiment of this research, one of the reflectors is set up on several electronically controlled displacement stage as the object to be tested, and the electronically controlled stages are controlled to perform different strokes and different ways of movement on each axis to verify the feasibility and performance of this system.
The system purposed in this research saves a lot of installation space and reduces the equipment cost compared with traditional double optical path interferometer structure or grating interferometer used for displacement measurement. According to the theoretical derivation and experimental results, the measurement resolution of this measurement system on the X-Y plane is 58 μm, the sensitivity is 17 pixels/mm, the measurement limit distance is 5 x 5 cm2, and the measurement speed is 20 fps; The Z axis measurement resolution is 6.25 nm, the sensitivity is 0.56˚/nm, the measurement limit is 20 cm and the measurement speed is 3.1 μm/s.
[1] 李朱育, “多自由度位移與姿態量測技術開發,”科技部補助專題研究計畫成果 報告, MOST 109-2221-E-008-029- (2021).
[2] F. J. Lin, Y. S. Kung, S. Y. Chen, and Y. H. Liu, “Recurrent wavelet-based Elman neural network control for multi-axis motion control stage using linear ultrasonic motors,” Iet. Electr. Power. App. 4(5), 314-332 (2010).
[3] M. A. Donmez, D. S. Blomquist, R. J. Hocken, C. R. Liu, and M. M. Barash, “A general methodology for machine tool accuracy enhancement by error compensation,” Precis. Eng. 8(4), 187-196 (1986).
[4] L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669 (1972).
[5] T. Kelemenová, M. Dovica, E. Jakubkovič, and P. Sedlačko, “Condition Evaluation of Optical Position Sensor,” Int. J. Autom. Control. 5(2), 37-40 (2017).
[6] M. Born and E. Wolf, “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Edition),” Cambridge University Press. (1999).
[7] T. Doi, I. D. Marinescu, and S. Kurokawa, “ The Current Situation in Ultra-Precision Technology – Silicon Single Crystals as an Example,” Advances in CMP Polishing Technologies, 15-111 (2012).
[8] M. Choubey and A.C. Rao, “Synthesizing linkages with minimal structural and mechanical error based upon tolerance allocation,” Mech. Mach. Theory. 17(2), 91-97 (1982).
[9] Q. Wang, N. Zissler, and R. Holden, “Evaluate error sources and uncertainty in large scale measurement systems,” Robot. Cim-Int. Manuf. 29(1), 1-11 (2013).
[10] F. Xie, M. Li, D. Song, J. Sun, and T. Zhang, “Large range and high resolution on-line displacement measurement system by combining double interferometers,” Opt. Express 18(24), 24961-24968 (2010).
[11] W. Jin, M. Song, W. Hu, Y. L. Xue, and Gao, Y., “Diffraction propagation of light wave and image distortionless transmission in ten-fold symmetric photonic quasicrystal lattices,” Opt. Commun. 500, 127329 (2021).
[12] M. S. Scholl, “Ray trace through a corner-cube retroreflector with complex reflection coefficients,” J. Opt. Soc. Am. A 12(7), 1589-1592 (1995).
[13] 覺文郁, “光學式陣列應用於精密機械多自由度檢測技術之發展,”國科會專題研究計畫成果報告, NSC 96-2628-E-150-004-MY3 (2010).
[14] J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement measurement system using a diffraction grating,” Rev. Sci. Instrum. 71(1), 3214 (2000).
[15] J. S. Oh, E. D. Bae, T. Keem, and S. W. Kim, “Measuring and compensating for 5-DOF parasitic motion errors in translation stages using Twyman–Green interferometry,” Int. J. Mach. Tool. Manu. 46(14), 1748-1752 (2006).
[16] K. Umetsu, R. Furutnani, S. Osawa, T. Takatsuji, and T. Kurosawa, “Geometric calibration of a coordinate measuring machine using a laser tracking system,” Meas. Sci. Technol. 16(12), 2466–2472 (2005).
[17] H. L. Hsieh and S. W. Pan. “Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements,” Opt. Express. 23(3), 2451-2465 (2015).
[18] Z. Lu, P. Wei, C. Wang, J. Jing, J. Tan, and X. Zhao, “Two-degree-of-freedom displacement measurement system based on double diffraction gratings,” Meas. Sci. Technol. 27(7), 074012 (2016).
[19] G. Molnar, S. Strube, P. Köchert, H. U. Danzebrink, and J. Flügge, “Simultaneous multiple degrees of freedom measurement system,” Meas. Sci. Technol. 27(8), 084011 (2016).
[20] W. Chen, F. Feng, D. Chen, W. Lin, and S. C. Chen, “Precision non-contact displacement sensor based on the near-field characteristics of fiber specklegrams,” Sens. Actuator A Phys. 296(1), 1-6 (2019).
[21] C. S. Liu, J. J. Lai, and Y. T. Luo, “Design of a measurement system for six-degree-of-freedom geometric errors of a linear guide of a machine tool,” Sensors (Basel). 19(1), 5 (2019).
[22] L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48(2), 141-148 (20010).
[23] M. Schmidt, E. Aguénounon, A. Nahas, M. Torregrossa, B. J. Tromberg, W, Uhring, and S. Gioux, “Real-time, wide-field, and quantitative oxygenation imaging using spatiotemporal modulation of light,” J. Biomed. Opt. 24(7), 071610 (2019).
[24] P. Groot and L. Deck, “Surface Profiling by Analysis of White-light Interferograms in the Spatial Frequency Domain,” J. Mod. Opt. 42(2), 389-401 (1994).
[25] D. Halliday, R. Resnick, and J. Walker, “Fundamentals of Physics,” Hoboken, NJ, Wiley (2011).
[26] J. I. Thomas, “ Two point-source interference: a study of the formation of concentric circular fringes,” IOPSciNotes, 2, 035203 (2021).
[27] P. Lehmann, M. Künne, and T. Pahl, “ Analysis of interference microscopy in the spatial frequency domain,” J. Phys. Photonics, 3(1), 014006 (2021).
[28] R. A. Renaut, J. D. Hogue, S. Vatankhah, and S. Liu, “ A fast methodology for large-scale focusing inversion of gravity and magnetic data using the structured model matrix and the 2-D fast Fourier transform,” Geophys. J. Int., 223(2), 1378-1379 (2020).
[29] B. Bieg, “Polarization properties of a metal corner-cube retroreflector,” Fusion Eng. Des. 96-97(C), 729-732 (2015).
[30] C. Rothleitner and O. Francis, “On the influence of the rotation of a corner cube reflector in absolute gravimetry,” Metrologia 47(5), 567 (2010).
[31] L. Grunwaldt, “Basic Principles of LRR Design,” Training Course for Young Researchers, Riga, Latvia (2014).
[32] D. G. Abdelsalam, B. Yao, P. Gao, J. Min, and R. Guo, “Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry,” Appl. Opt. 51(20), 4891-4895 (2012).
[33] K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt. 21(14), 2470-2470 (1982).
[34] 角隅反射鏡 CCB-10M
https://jp.optosigma.com/zh_jp/optics-optical-coatings/prisms/retro-reflectors/ccb-10m.html
[35] M. E. Wolak, D. J. Fairbairn, and Y. R. Paulsen, “Guidelines for estimating repeatability,” Methods. Ecol. Evol. 3(1), 129-137 (2012).
[36] M. W. Lipsey, “A scheme for assessing measurement sensitivity in program evaluation and other applied research,” Psychol. Bull. 94(1), 152-165 (1983).
[37] J. G. Sivak and R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vis. Res. 23(1), 59-70 (1983).