| 研究生: |
賴盈秀 Ying-hsiu Lai |
|---|---|
| 論文名稱: |
利用錯誤擴散法改善HEVC畫面內預測之研究 Improving HEVC Intra Prediction with Error Diffusion |
| 指導教授: |
林銀議
Yin-yi Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | HEVC 、畫面內預測 、預測單元 、渲染方法 、錯誤擴散法 |
| 外文關鍵詞: | HEVC, Intra Prediction, Prediction Unit, Inpainting, Error Diffusion |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最新一代的視訊壓縮標準HEVC(High Efficiency Video Coding)將畫面內預測之角度模式提升至33個方向,使得預測畫面的方向性能夠更加接近原始畫面,而得到更好的壓縮效率。然而HEVC角度預測擁有單一方向性的缺點,對於擁有複雜紋理的畫面還有改進的可能性。因此本篇論文提出將原本使用於半色調法(Halftoning)的錯誤擴散法(Error Diffusion)應用於畫面內預測(Intra Prediction)之中。我們首先利用對梯度的調整控制畫面的平滑度,接著再利用錯誤擴散法將調整後的誤差擴散出去。錯誤擴散法和渲染方法一樣與周圍像素點有很高的相依性,因此能夠同時將雙邊參考像素資訊延續至預測畫面當中,並且運算複雜度較渲染方法低非常多。因此錯誤擴散法能夠在不增加過多編碼時間的情況下,有效改善含有複雜紋理之區塊的預測畫面,進而增進壓縮的效能。實驗結果表明,錯誤擴散法與HEVC畫面內預測之結合型演算法能夠降低0.5%的BDBR(Bjontegaard Delta Bit Rate)。
High Efficiency Video Coding, the latest standard of video compression, has improved the efficiency of Intra Prediction by making finer prediction image due to the increasing of Intra Angular Prediction modes, which now have 33 different directions. However, the characteristic of single directionality has not changed. In order to improve the prediction of images with complex texture, we apply Error Diffusion, which was originally a technique of Halftoning, to Intra Prediction. We control the smoothness of the image by adjusting the gradient between pixels, followed by diffusing errors to neighboring pixels. Hence, Error Diffusion has as high correlation with neighboring pixels as Inpainting does. It can improve the quality of prediction images by extending the information of bilateral reference pixels to them with only a little increase of time consumption. It was showed that the hybrid algorithm combined by Error Diffusion and HEVC Intra Prediction achieves 0.5% BDBR(Bjontegaard Delta Bit Rate) saving compared with standard HEVC Intra Coding by the experimental results.
[1] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 11(HM 11) Encoder Description”, JCTVC-L1002,JCT-VCMeeting, Incheon,Jan.2013.
[2] Y. Zhang, “Improving HEVC Intra Prediction with Inpainting Method,” Master Thesis, National Central University, July 2013.
[3] J. Lainema, F. Bossen, W. J. Han, J. Min and K. Ugur, “Intra Coding of the HEVC Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1792-1801, Dec. 2012.
[4] J. Min, S. Lee, I. Kim, W. J. Han, J. Lainema, and K. Ugur, “Unification of the directional intra prediction methods in TMuC,” JCTVC-B100, Geneva, CH, 21-28 July 2010.
[5] T. K. Tan, M. Budagavi, and J. Lainema, “Summary Report for TE5 on Simplification of Unified Intra Prediction,” JCTVC-C046, Guangzhou, China, Oct. 2010.
[6] M. Wien, “Variable block-size transform for H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, No.7, 604-619, 2003.
[7] B. Bross, W. J. Han, G. J. Sullivan, J. R. Ohm, and T. Wiegand, “High efficiency video coding(HEVC) text specification draft 7,” JCTVC-I1003, May 2012.
[8] Y. Piao, J. Min, and J. Chen, “Encoder improvement of unified intra prediction,” JCTVC-C207, Guangzhou, China, 7-15 Oct. 2010.
[9] G. J. Sullivian, J. R. Ohm, W. J. Han and T. Wiegand, “Overview of the High Efficiency Video Coding(HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, Dec. 2012.
[10] T. Lee, J. Chen, and W.-J. Han, “TE 12.1: Transform unit quadtree/2-level test,” JCTVC-C200, Guangzhou, China, 7-15 Oct. 2010.
[11] M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester, “Image inpainting,” in Proceedings of ACM SIGGRAPH, Jul. 2000, pp. 417-424.
[12] T. F. Chan and J. Shen, “Mathematical models for local non-texture inpainting,” SIAM Journal on Applied Mathematics, vol. 62, no. 3, pp.1019-1043, 2002.
[13] T. F. Chan and J. Shen, “Non-texture inpainting by curvature-driven diffusions,” Journal of Visual Communication and Image Representation, vol. 12, issue 4, pp. 436-449, 2001.
[14] Y. Wu, M. Wang, X. Liu, “A Fast Inpainting Algorithm Using Half-Point Gradient,” in Proceedings of IEEE Second International Workshop on Computer Science and Engineering, China, 28-30 Oct. 2009.
[15] M. M. Oliveria, B. Bowen, R. McKenna, Y. Chang, “Fast Digitanl Image Inpainting,” in Proceedings of Visualization, Imaging and Image Processing, Marbella, Spain, 3-5 Sep. 2001.
[16] D. Liu, X. Sun, F. Wu and etc., “Edge-oriented Uniform Intra Prediction,” IEEE Transactions on Image Processing, vol. 17, no. 10, pp. 1827-1836, Oct. 2008.
[17] S. Hareesh. A, V. Chandrasekaran, “A fast and simple gradient function guided filling order prioritization for exemplar-based color image inpainting,” in Proceedings of International Conference on Image Processing, Hong Kong, 26-29 Sep. 2010.
[18] R. Martinez-Noriega, A. Roumy, G. Blanchard, “Exemplar-based image inpainting: fast priority and coherent nearest neighbor search,” in Proceedings of IEEE International Workshop on Machine Learning for Signal Processing, Santander, Spain, 23-26 Sept. 2012.
[19] Anupam, P. Goyal, S. Diwakar, “Fast and enhanced algorithm for exemplar based image inpainting,” Information Technology IIIT, Allahabad, India.
[20] A. A. Efros and T.K. Leung, “Texture synthesis by non-parametric sampling,” in Proceedings of IEEE International Conference on Computer Vision, Kerkyra, 20-27 Sep. 1999, vol. 2, pp. 1033-1038.
[21] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis and transfer,” in Proceedings of ACM SIGGRAPH Conference, Eugene Fiume, pp. 341-346, 2001.
[22] D. Doshkov, P. N. Nya, H. Lakshman and etc., “Towards Efficient Intra Prediction based on Image Inpainting Method,” in Proceedings of Picture Coding Symposium, Dec. 2010, pp.470-473.
[23] R. Ulichney, “A review of halftoning techniques,” Cambriddge Research Lab, Cambridge, MA 02139, USA.
[24] R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial grayscale,” in Proceedings of the Society of Information Display, 1976, vol. 17/2, pp. 75-77.
[25] J. Jarvis, C. Judice, and W. Ninke, “A survey of techniques for the display of continuous tone pictures on bilevel displays,” Computer Graphics and Image Processing, vol. 5, pp. 13-40, May 1976.
[26] P. Stucki, “Image processing for document reproduction,” Advances in Digital Image Processing, New York, NY: Plenum, pp. 177-218, 1979.
[27] J. H. Horng, “Edge preserving halftoning based on the error diffusion technique,” 國立金門技術學院電資研究所.
[28] T. N. Pappas, D. L. Neuhoff, “Printer models and error diffusion,” IEEE Transactions on Image Processing, pp. 66-80, 1995.
[29] Z. Fan, “Error diffusion with a more symmetric error distribution,” in Proceedings of the International Society for Optics and Photonics, San Jose, CA , 6 Feb. 1994, .
[30] J. Sullivan, R. Miller, G. Pios, “Image halftoning using a visual model in error diffusion,” Journal of the Optical Society of America A, Vol. 10, No. 8, Aug. 1993.
[31] T. N. Papps, D. L. Neuhoff, “Printer models and error diffusion,” IEEE Transactions on Image Processing, vol. 4, no. 1, Jan. 1995.
[32] P. T. Metaxas, “Optimal parallel error-diffusion dithering,” Computer Science Department of Wellesley College.
[33] G. Bjontegarrd, “Calculation of average PSNR differences between RD curves,” in Proceedings of International Telecommunication Union SC16/Q6 13th Vedio Coding Experts Group meeting(ITU-T VCEG), Austin, TX, Apr. 2001, No.VCEG-M33.