| 研究生: |
王妤甄 Yu-Chen Wang |
|---|---|
| 論文名稱: |
以微波輔助頂空固相微萃取法萃取水樣中的麝香化合物 Determination of Synthetic Polycyclic Musk in Aqueous Samples by Microwave-Assisted HS-SPME & GC/MS |
| 指導教授: |
丁望賢
Wang-Hsien Ding |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 微波輔助 、頂空固相微萃取法 、氣相層析質譜儀 、多環麝香化合物 |
| 外文關鍵詞: | Polycyclic Musk, GC/MS, HS-SPME, Microwave-assisted |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人工合成麝香化合物是一種廣泛被使用在清潔劑、香水、洗髮精和其他許多個人護理產品的化學物質。根據人工合成麝香化合物的物理性質與化學性質,可被歸類為具疏水性與半揮發性的汙染物。具有這些性質的汙染物在進入環境後可透過食物鏈造成生物放大效應。目前的文獻報導指出,在空氣、淡水、海水和底泥中分別都能檢測出多環類麝香化合物的存在。根據這些文獻也能看出多環類麝香化合物在自然環境中的流佈情形。由於多環類麝香化合物具有高脂溶性,在水生動物的體內也能見到這類化合物的蹤跡,甚至在人類的脂肪組織或母乳中也存在著多環類麝香化合物。
在本篇研究中,發展微波輔助固態微萃取法(Microwave-Assisted Headspace Solid-Phase Microextraction,簡稱MA-HS-SPME)當作樣品的前處理步驟,並使用此方法從環境水樣萃取六個常見的多環類麝香化合物,再結合氣相層析質譜儀做為檢測工具。本研究探討幾個影響固相微萃取的因素(如萃取時間、微波爐的瓦數、添加鹽類的量等)並做最佳化。最佳化的萃取條件則是取20 mL水樣置於40 mL萃取瓶(水樣體積與頂空體積為1:1),添加4 g NaCl,使用65 ?m PDMS/DVB的纖維在180 W下加熱並萃取4分鐘。偵測極限(Limit of Detection,簡稱LOD)範圍為0.05至0.1 ng/L之間。定量極限(Limit of Quantification,簡稱LOQ)則低於0.2 ng/L。在環境水樣中,HHCB與AHTN為主要被檢出的多環類麝香化合物,以標準添加法定量結果介於1.2至37.3 ng/L之間,回歸係數則高於0.981。
本研究所發展的微波輔助頂空固相微萃取法結合氣相層析質譜儀搭配選擇離子偵測模式的方法,具有高靈敏度與穩定的檢測結果。可以用來檢測環境水樣中多環麝香化合物的存在。
Synthetic musk fragrances are a group of chemicals used widely in detergents, perfumes, shampoos, and many other personal care products. According to their physical and chemical properties, they are in common with many hydrophobic and semivolatile organic pollutants that are known to biomagnify through the food chain. The occurrence of synthetic polycyclic musks, a group of the most concern synthetic musk fragrances currently, has been reported in air, freshwater, seawater and sediment suggesting that they are widespread contaminants in the environment. Because of their highly lipophilic properties, polycyclic musks have been also found in aquatic biota, such as mussels and fish, and even in human adipose tissue and breast milk. These compounds have been shown to demonstrate estrogenic activities, even higher concentrations of synthetic polycyclic musks in women''s bloods have been correlated to higher rate of miscarriage.
In this study, the sample pretreatment technique of microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) has been developed and studied for the extraction of six commonly used synthetic polycyclic musks (i.e., Galaxolide (HHCB), Tonalide (AHTN), Celestolide (ADBI), Traseolide (ATII), Cashmeran (DPMI) and Phantolide (AHMI)) in aqueous samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. The effects of various extraction parameters (i.e., extraction time, microwave power and addition of salt) for the quantitative extraction of these polycyclic musks by MA-HS-SPME were systematically investigated and optimized. The analytes can be extracted by 65 ?m PDMS/DVB fiber under 180 W microwave power for 4 min, 20 mL water sample added 4 g NaCl was put in 40 mL vial with headspace 20 mL (the ratio of sample : headspace = 1:1, v/v). The limit of detection (LOD) ranged from 0.05 to 0.1 ng/L and the limit of quantification (LOQ) was less than 0.2 ng/L. Preliminary results show that HHCB and AHTN were two commonly detected polycyclic musks in real environmental samples, ranging from 1.2 to 37.3 ng/L via standard addition method with correlation coefficient (r2) above 0.981. The analytical procedure developed herein demonstrated that the MA-HS-SPME and GC-MS-SIM methods are reliable, sensitive and offer a convenient analytical technique for trace determination of polycyclic musks in various water samples.
1.Arthur,C.L.; Killam, L.M.; Buchholz, K.D.; Pawliszyn, J.; Berg, J.R., Automation and optimization of solid-phase microextraction, Anal. Chem., 1992, 64, 1960-1966.
2.Arthur, C.L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem., 1990, 62, 2145-2148.
3.Atkins, P.; Locke, J.W., Atkins'' Physical Chemistry, 7th ed., Oxford University Press, 2002.
4.Balk, F.; Ford, R.A., Environmental risk assessment for the polycyclic musks AHTN and HHCB in the EU: Ⅰ. Fate and exposure assessment, Toxicol. Lett., 1999, 111, 57-79.
5.Battaglin, W.; Drewes, J.; Bruce, B.; McHugh, M., Introduction: contaminants of emerging concern in the environment, Water Resour. IMPACT, 2007, 9, 3-4.
6.Belardi, R.G.; Pawliszyn, J.,The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns, Water Pollut. Res. J. Can., 1989, 24, 179-182.
7.Bester, K., Personal Care Compounds in the Environment: Pathways, Fate, and Methods for Determination, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.
8.Chen, L.; Song, D.; Tian, Y.; Ding, L.; Yu, A.; Zhang, H., Application of on-line microwave sample-preparation techniques, Trends Anal. Chem., 2008, 27, 151-159.
9.Chou, Y-J; Dietrich, D.R., Toxicity of nitromusks in early lifestage of south african clawed frog (Xenopus laevis) and zebrafish (Danio rerio), Toxicol. Lett., 1999, 11, 17-25.
10.Cole, K.S.; Cole, R.H., Dispersion and absorption in dielectrics, J. Chem. Phys., 1941, 9, 341–351.
11.Dietrich, D.R.; Hitafeld, B.C., Bioaccumulation and ecotoxicity of synthetic musks in the aquatic environmnt, The Handbook of Environmental Chemistry, Springer Berlin / Heidelberg, 2004, 3, 233-244.
12.Dietrich, D.R.; Chou, Y.J., Ecotoxicity of Musks, Pharmaceuticals and Personal Care Products in the Environment; Scientific and Regulatory Issues, American Chemical Society, 2001, 156-167.
13.Ford, R.A.; Hawkins, D.R.; Schwarzenbach, R.; Api, A.M., The systemic exposure to the polycyclic musks, AHTN and HHCB, under conditions of use as frangrances ingredients: evidence of lack of complete absorption from a skin reservoir, Toxicol. Lett., 1999, 111, 133-142.
14.Gatermann, R.; Biselli, S.; Hűhnerfuss, H.; Rimkus, G.G.; Hecker, M.; Karbe, L., Sythetic musks in the environmennt. Part 1: Species-dependent bioaccumulation of polycyclic and nitro musk fragrances in freshwater fish and mussels, Arch. Environ. Con. Tox., 2002, 42, 437-446.
15.Ganzler, K.; Salgó, A.; Valkó, K., A novel sample preparation method for chromatography, J. Chromatog., 1986, 371, 299-306.
16.Giddings, J.M.; Salvito, D.; Putt, A.E., Acute toxicity of 4-amino musk xylene to daphnia magna in laboratory water and natural water, Water Res., 2000, 34, 3686-3689.
17.Glassmeyer, S.T., The cycle of emerging contaminants, Water Resour. IMPACT, 2007, 9, 5-7.
18.Han, G.Z.; Chen, M.D., Microwave peak absorption frequency of liquid, Sci. China Ser. G-Phys. Mech. Astron., 2008, 51, 1254-1263.
19.Harris, D.C., Quantitative chemical analysis, 6th ed., W.H. Freeman and Company, 2002.
20.Haque, K.E., Microwave energy for mineral treatment processes-a brief view, Int. J. Process., 1999, 57, 1-24.
21.Helbing, K.S.; Schmid, P.; Schlatter, C., The trace analysis of musk Xylene in biological samples: Problem associated with its ubiquitois occurrence, Chemosphere, 1994, 29, 477-484.
22.Heberer, T.; Gramer, S.; Stan, H-J., Occurrence and distribution of organic contaminants in the aquatic system in Berlin, Germany. Part 3. Determination of synthetic musks in Berlin surface water applying solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS), Acta Hydroch. Hydrob., 1999, 27, 150-156.
23.Holtz S., There is no “Away.” Pharmaceuticals, personal care products, and endocrine-disrupting substances: Emerging contaminants detected in water, Canadian institude for environmental law and policy, 2006.
24.Jiu, A., Solid phase microextraction for quantitative analysis in nonequilibrium situations, Anal. Chem., 1997a, 69, 1230-1236.
25.Jiu, A., Headspace solid phase microextraction. Dynamics and quantitative analysis before reaching a partition equilibrium, Anal. Chem., 1997b, 69, 3260-3266.
26.Jiu, A., Solid-phase microextraction in headspace analysis. Dynamics in non-steady-state mass transfer, Anal. Chem., 1998, 70, 4822-4826.
27.Kataoka, H.; Lord, H.L.; Pawliszyn, J., Applications of solid-phase microextraction in food analysis, J. Chromatogr. A, 2002, 880, 35-62.
28.Kingston, H.M.; Jassie, L.B., Introduction to microwave sample preparation: Theory and practice, American Chemical Society, 1988, 7-31.
29.Kokot-Helbling, K.; Schmid, P.; Schlatter, C., Musk xylene residues in human. Exposure pathways, pharmacokinetics, and toxicological importance, Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene, 1995, 86, 1-13.
30.Liaw, C.H.; Wang, J.S.P.; Greenhorn, R.A.; Chao, K.C., Kinetics of fixed-bed adsorption: A new solution, AIChE J. 1979, 25, 376-381.
31.Luque-García, J.L.; Luque de Castro, M.D., Where is microwave-base analytical equipment for solid sample pre-treatment going?, Trends Anal. Chem., 2003, 22, 90-98
32.McCarty, L.S.; Mackay, D.; Smith, A.D.; Ozburn, G.W.; Dixon, D.G., Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: Neutral narcotic organics, Environ. Toxico. Chem., 1992, 11, 917-930.
33.Nakata, H., Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters, Environ. Sci. Technol., 2005, 39, 3430-3434.
34.Peck, A.M., Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices, Anal. Bioanal. Chem., 2006, 386, 907-939.
35.Petrović, M.; Gonzale, S.; Barceló, D., Analysis and removal of emerging contanminants in wastewater and drinking water, Trends Anal. Chem., 2003, 22, 685-696.
36.Premysl, S., Risk evaluztion of dietary and dermal exposure to musk fragrances, The Handbook of Environmental Chemistry, Springer Berlin / Heidelberg, 2004, 3, 281-310.
37.Riedel, J.; Birner, G.; van Dropp, C.; Neumann ,H.G; Dekant, W., Haemoglobin binding of a musk xylene metabolite in man, Xenobiotica, 1999, 29, 573-582.
38.Riedel, J.; Dekant, W., Biotransformation and toxicokinetics of musk xylene in humans, Toxicol. Appl. Pharm., 1999, 157, 145-155.
39.Rimkus, G.G., Polycyclic musk fragrances in the aquatic environment, Toxicol. Lett., 1999, 111, 37-56.
40.Seinen, W.; Lemmen, J.G.; Pieters, R.H.H.; Verbruggen, E.M.J.; van der Burg, B., AHTN and HHCB show weak estrogenic – but no uterotrophic activity, Toxicol. Lett., 1999, 111, 161-168.
41.Skoog, D.A.; Holler, F.J.; Crouch, S.R., Principles of instrumental analysis, 6th ed., Thomson Learning, 2006
42.Smith, F.E.; Arsenault, E.A., Microwave-assisted sample preparation in analytical chemistry, Talanta, 1996, 43, 1207-1268.
43.Spencer, P.S.; Bischoff-Fenton, M.C.; Moreno, O.M.; Opdyke, D.L.; Ford, R.A., Neurotoxic properties of musk ambrette, Toxicol. Appl. Pharm., 1984, 75, 571-575.
44.Tas, J.W.; Balk, F.; Ford, R.A.; van der Plassche, E.J., Environmental risk assessment of musk ketone and musk xylene in the netherlands in accordance with the EU-TGD, Chemosphere, 1997, 35, 3686-3715.
45.Yang, R.T., Gas separation by adsorption processes, Butterworth/Boston, 1987.
46.Zhang, Z.; Pawliszyn, J., Headspace solid-phase microextraction, Anal. Chem., 1993, 65, 1843-1852.
47.Zhang, Z.; Pawliszyn, J., Quantitative extraction using an internally cooled solid phase microextraction, Anal. Chem., 1995, 67, 34-43.