跳到主要內容

簡易檢索 / 詳目顯示

研究生: 查伯衡
Po-heng Cha
論文名稱: 利用全球定位系統地面接收機與福爾摩沙衛星三號研究日落反轉增強之電離層電子濃度響應
指導教授: 劉正彥
Jann-yenq Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 日落反轉增強
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日落反轉增強 (prereversal enhancement, PRE)發生於赤道電離層之黃昏時段,其垂直電漿飄移由原先微小值,突然轉為強烈之向上飄移現象。本篇論文利用美洲和亞洲/大洋洲兩經度鏈之全球定位系統 (Global Positioning System, GPS)地面接收機資料,逐日探討2002和2009年日落反轉增強引發之電離層全電子含量緯度分佈和日變化,而其季中位數值將與福衛三號探測電子濃度相互比較。結果顯示,日落反轉增強影響之全電子含量,春秋分大於夏冬至,太陽活動極大期大於極小期;緯度分佈,春秋分比冬夏至遠離赤道區,太陽活動極大期比極小期遠離,增強現象最常發生於2100LT。此外,相位擾亂(phase fluctuation)值正比於對應之全電子含量,說明日落反轉增強對電離層不規則體之發生有正面之貢獻。


    The prereversal enhancement (PRE) in the vertical ion drifts is a particularly well known low latitude electrodynamic feature, exhibited as a sharp upward spike in the velocity shortly after local sunset, which would result in plasma density increases in the off-equator areas. In this study, to observe signatures of the PRE, total electron contents (TECs) derived from GPS ground-based receivers and electron density derived from FORMOSAT-3/COSMIC of two chains along the American longitude of 70°W and Asian/Australian longitude of 120°E are used. We compute the associated strength and occurrence frequency of the PRE of the two chains as function of location (geomagnetic latitude), season, and solar activity (2002 and 2009) on GPS TEC and location, altitude, and season on FORMOSAT-3 / COSMIC electron density. Results show that TEC and electron density increase associated with the PRE are more pronounced in equinox (solar maximum) than solstice months (solar minimum). Finally, FP values can also be seen to show a linear relationship with TEC and electron density increase associated with the PRE.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 vi 表目錄 ix 第一章 緒論 1 1.1電離層 1 1.2日落反轉增強 5 1.3 研究動機 8 第二章 觀測儀器與方法 9 2.1全球定位系統 9 2.2福爾摩沙衛星三號 12 第三章 資料分析與觀測結果 14 3.1觀測資料 14 3.2日落反轉增強季節與太陽活動變化 20 3.3日落反轉增強垂直高度分佈 41 第四章 討論與結論 51 附錄A 57 參考文獻 64

    Balan, N., and G. J. Bailey (1995), Equatorial plasma fountain and its effects: Possibility of an additional layer, J. Geophys. Res., 100(A11), 21, 421–21,432, doi:10.1029/95JA01555.
    Balan, N., and P. B. Rao (1987), Latitudinal variations of night-time enhancement in total electron content, J.Geophys. Res., 92, 3436–3440, doi:10.1029/JA092iA04p03436.
    Balan, N., G. J. Bailey, and R. Balachandran Nair (1991), Solar and magnetic activity effects on the latitudinal variations of nighttime TEC enhancement, Ann. Geophys., 9, 60– 69.
    Davies, K., Recent progress in satellite radio beacon studies with particular emphasison the ATS-6 radio beacon experiment, Space Sci. Rev., 25, 357, 1980.
    Farley, D. T., Bonelli, E., Fejer, B. G., and Larsen, M. F. (1986). The prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res. 91,13, 723.
    Fejer, B. G., E. R. dePaula, S. A. Gonzalez, and R. F. Wood man, Average vertical and zonal F region plasma drifts over Jicamarca, J. Geophys. Res., 96, 13,901-13,906, 1991
    Fesen, C. G., Crowley, G., Roble, R. G., Richmond, A. D., and Fejer, B. G. (2000). Simulation of the prereversal enhancement in the low latitude vertical in drifts. Geophys. Res. Lett. 27(13), 1851.
    Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, GPS Theory and Practice,3rd version, Springer-Verlag, Wien, New York, 1994.
    Kelley, M. C., and R. A. Heelis (1989), The Earth’s Ionosphere, Plasma Physicsb and Electrodynamics, Academic Press, San Diego, California, USA.
    Kelley, M. C., The Earth's Ionospere, Plasma physics and electrodynamics, Second Edition, Academic Press., 2009.
    Lin, C. H., A. D. Richmond, J. Y. Liu, H. C. Yeh, L. J. Paxton, G. Lu, H. F. Tsai,and S.-Y. Su, Large-scale variations of the low-latitude ionosphere during the October-November 2003 superstorm: Observational results, J. Geophys. Res., 110, doi:10.1029/2004JA010900, 2005.
    Liu, J. Y., H. F. Tsai, and T. K. Jung (1996), Total electron content obtained by using the global positioning system, Terr. Atmos. Oceanic Sci., 7, 107–117.
    Mendillo, M., L. Bosheng, and J. Aarons (2000), The application of GPS observations to equatorial aeronomy, Radio Sci.,35(3), 885–904.
    Ratcliffe, J. A., An Introduction to the Ionosphere and Magnetosphere, Cambridge Univ.Press, New York, 1972.
    Tsai, H.-F., J-Y. Liu, W.-H. Tsai, C.-H. Liu, C.-L. Tseng, and C.-C. Wu (2001), Seasonal variations of the ionospheric total electron content in Asian/Australian equatorial anomaly regions, J. Geophys. Res., 106(A12), 30,363.
    Woodman, R. F., Vertical drift velocities and east-west electric fields at the magnetic equator, J. Geophys. Res., 75, 6249- 6259, 1970.
    Sun, Y. Y., J. Y. Liu, and C. H. Lin (2012), A statistical study of low latitude F region irregularities at Brazilian longitudinal sector response to geomagnetic storms during post-sunset hours in solar cycle 23, J. Geophys. Res., 117, 03333,doi:10.1029/2011JA017419.
    蔡和芳, 「全球定位系統觀測電離層赤道異常之研究」 ,國立中央大學,博士論文,民國88年。
    陳佳宏, 「電離層赤道異常與赤道電噴流」 ,國立中央大學,碩士論文,民國94年。
    孫楊軼, 「福爾摩沙衛星一號與全球定位系統地面接收機觀測太陽活動極大期低緯電離層不規則體」 ,國立中央大學,碩士論文,民國98年。
    陳朝焱, 「利用福爾摩沙衛星三號觀測電漿層」 ,國立中央大學,碩士論文,民國98年。
    林其彥, 「利用福爾摩沙衛星三號進行星載電離層斷層掃描」 ,國立中央大學,碩士論文,民國98年。
    張世穎, 「利用全電子含量研究中緯度電離層電子濃度增強」 ,國立中央大學,碩士論文,民國100年。

    QR CODE
    :::